K2SnCl6 (Low–temperature) Structure: A6B2C_tP18_128_eh_d_a

Picture of Structure; Click for Big Picture
Prototype : K2SnCl6
AFLOW prototype label : A6B2C_tP18_128_eh_d_a
Strukturbericht designation : None
Pearson symbol : tP18
Space group number : 128
Space group symbol : $P4/mnc$
AFLOW prototype command : aflow --proto=A6B2C_tP18_128_eh_d_a
--params=
$a$,$c/a$,$z_{3}$,$x_{4}$,$y_{4}$


Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Sn} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Sn} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{K} \\ \mathbf{B}_{7} & = & z_{3} \, \mathbf{a}_{3} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl I} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl I} \\ \mathbf{B}_{9} & = & -z_{3} \, \mathbf{a}_{3} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl I} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Cl I} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{12} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{13} & = & -y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{14} & = & y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{Cl II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8h\right) & \mbox{Cl II} \\ \end{array} \]

References

  • H. Boysen and A. W. Hewat, A neutron powder investigation of the structural changes in K2SnCl6, Acta Crystallogr. Sect. B Struct. Sci. 34, 1412–1418 (1978), doi:10.1107/S0567740878005816.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=A6B2C_tP18_128_eh_d_a --params=

Species:

Running:

Output: