$y$–Y2Si2O7 Structure : A7B2C2_mP22_11_3e2f_2e_ab

Picture of Structure; Click for Big Picture
Prototype : O7Si2Y2
AFLOW prototype label : A7B2C2_mP22_11_3e2f_2e_ab
Strukturbericht designation : None
Pearson symbol : mP22
Space group number : 11
Space group symbol : $P2_{1}/m$
AFLOW prototype command : aflow --proto=A7B2C2_mP22_11_3e2f_2e_ab
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$


  • (Becerro, 2003) found that the NMR spectrum of $y$–Y2Si2O7 showed only one peak for yttrium. If that is the case, then this crystal structure is incorrect.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Y I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}b \, \mathbf{\hat{y}} & \left(2a\right) & \mbox{Y I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(2b\right) & \mbox{Y II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} & \left(2b\right) & \mbox{Y II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & x_{5} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O III} \\ \mathbf{B}_{10} & = & -x_{5} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O III} \\ \mathbf{B}_{11} & = & x_{6} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Si I} \\ \mathbf{B}_{12} & = & -x_{6} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Si I} \\ \mathbf{B}_{13} & = & x_{7} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Si II} \\ \mathbf{B}_{14} & = & -x_{7} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Si II} \\ \mathbf{B}_{15} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{16} & = & -x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{8}\right)b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{17} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{18} & = & x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{8}\right)b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{19} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O V} \\ \mathbf{B}_{20} & = & -x_{9} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{9}\right) \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{9}\right)b \, \mathbf{\hat{y}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O V} \\ \mathbf{B}_{21} & = & -x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O V} \\ \mathbf{B}_{22} & = & x_{9} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{9}\right) \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{9}\right)b \, \mathbf{\hat{y}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O V} \\ \end{array} \]

References

  • N. G. Batalieva and Y. A. Pyatenko, Artificial yttrialite (y–phase) – a representative of a new structure type in the rare earth diorthosilicate series, Sov. Phys. Crystallogr. 16, 786–789 (1972). Translation of N. G. Batalieva and Yu. A. Pyatenko, Kristallogr. 16, 905 (1971).
  • A. I. Becerro, A. Escudero, P. Florian, D. Massiot, and M. D. Alba, Revisiting Y2Si2O7 and Y2SiO5 polymorphic structures by 89Y MAS–NMR spectroscopy, J. Solid State Chem. 177, 2783–2789 (2004), doi:10.1016/j.jssc.2004.03.047.

Found in

  • A. I. Becerro and A. Escudero, Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds, Phase Transit. 77, 1093–1102 (2004), doi:10.1080/01411590412331282814.

Geometry files


Prototype Generator

aflow --proto=A7B2C2_mP22_11_3e2f_2e_ab --params=

Species:

Running:

Output: