ZrP2O7 High–Temperature ($K6_{1}$) Structure : A7B2C_cP40_205_bd_c_a

Picture of Structure; Click for Big Picture
Prototype : P2O7Zr
AFLOW prototype label : A7B2C_cP40_205_bd_c_a
Strukturbericht designation : $K6_{1}$
Pearson symbol : cP40
Space group number : 205
Space group symbol : $Pa\bar{3}$
AFLOW prototype command : aflow --proto=A7B2C_cP40_205_bd_c_a
--params=
$a$,$x_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • $AB$2O7, ($A$ = Si, Ge, Sn, Pb, Ti, Zr, Hf, Mo, W, Re, Ce, U, etc.; $B$ = P, V, As)

  • This is the high temperature form of all the structures listed. The low temperature structure depends on the composition. Below 290 °C, ZrP2O7 transforms to an orthorhombic structure, space group $Pbca$ #61, with 136 unique crystallographic positions and 1080 atomic sites. See (Birkedal, 2006) and (Stinton, 2006) for more details.

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Zr} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Zr} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Zr} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4a\right) & \mbox{Zr} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4b\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4b\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{13} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{15} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{P} \\ \mathbf{B}_{17} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{19} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{21} & = & z_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & -z_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & y_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{26} & = & -y_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{29} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{31} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{33} & = & -z_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{36} & = & z_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{37} & = & -y_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{38} & = & y_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \mathbf{B}_{40} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \mbox{O II} \\ \end{array} \]

References

  • G. R. Levi and G. Peyronel, Struttura Cristallografica del Gruppo Isomorfo (Si4+, Ti4+, Zr4+, Sn4+, Hf4+) P2O7, Zeitschrift für Kristallographie – Crystalline Materials 92, 190–209 (1935), doi:10.1524/zkri.1935.92.1.190.
  • H. Birkedal, A. M. K. Andersen, A. Arakcheeva, G. Chapuis, P. Norby, and P. Pattison, The Room–Temperature Superstructure of ZrP2O7 Is Orthorhombic: There Are No Unusual 180° P–O–P Bond Angles, Inorg. Chem. 45, 4346–4351 (2006), doi:10.1021/ic0600174.
  • G. W. Stinton, M. R. Hampson, and J. S. O. Evans, The 136–Atom Structure of ZrP2O7 and HfP2O7 from Powder Diffraction Data, Inorg. Chem. 45, 4352–4358 (2006), doi:10.1021/ic060016b.

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A7B2C_cP40_205_bd_c_a --params=

Species:

Running:

Output: