NaMn7O12 Structure : A7BC12_cI40_204_bc_a_g

Picture of Structure; Click for Big Picture
Prototype : Mn7NaO12
AFLOW prototype label : A7BC12_cI40_204_bc_a_g
Strukturbericht designation : None
Pearson symbol : cI40
Space group number : 204
Space group symbol : $Im\bar{3}$
AFLOW prototype command : aflow --proto=A7BC12_cI40_204_bc_a_g
--params=
$a$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • CaCu3Ge4O12 and CaCu3Mn4O12

  • This is a double perovskite structure, and is only stable above 3 Gbar and above room temperature, but it is metastable under ambient conditions (Gilioli 2005ab). The actual composition of the measured sample is Na0.95Mn7.05O12, with the excess manganese displacing some of the sodium atoms on the ($2a$) site.

Body-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Na} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(6b\right) & \mbox{Mn I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(6b\right) & \mbox{Mn I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6b\right) & \mbox{Mn I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Mn II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Mn II} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Mn II} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & - \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{Mn II} \\ \mathbf{B}_{9} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{10} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{11} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{12} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{13} & = & y_{4} \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{14} & = & -y_{4} \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{15} & = & y_{4} \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{16} & = & -y_{4} \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{17} & = & z_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{18} & = & z_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{19} & = & -z_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{O} \\ \mathbf{B}_{20} & = & -z_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \mbox{O} \\ \end{array} \]

References

  • E. Gilioli, G. Calestani, F. Licci, A. Gauzzi, F. Bolzoni, A. Prodi, and M. Marezio, $P–T$ phase diagram and single crystal structural refinement of NaMn7O12, Solid State Sci. 7, 746–752 (2005), doi:10.1016/j.solidstatesciences.2004.11.020.

Found in

  • E. Gilioli, F. Licci, G. Calestani, A. Prodi, A. Gauzzi, and G. Salviati, Crystal growth and structural refinement of NaMn7O12, Cryst. Res. Technol. 40, 1072–1075 (2005), doi:10.1002/crat.200410489.

Geometry files


Prototype Generator

aflow --proto=A7BC12_cI40_204_bc_a_g --params=

Species:

Running:

Output: