High–Temperature Mo8O23 Structure : A8B23_mP62_13_4g_c11g

Picture of Structure; Click for Big Picture
Prototype : Mo8O23
AFLOW prototype label : A8B23_mP62_13_4g_c11g
Strukturbericht designation : None
Pearson symbol : mP62
Space group number : 13
Space group symbol : $P2/c$
AFLOW prototype command : aflow --proto=A8B23_mP62_13_4g_c11g
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$,$x_{9}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$,$x_{12}$,$y_{12}$,$z_{12}$,$x_{13}$,$y_{13}$,$z_{13}$,$x_{14}$,$y_{14}$,$z_{14}$,$x_{15}$,$y_{15}$,$z_{15}$,$x_{16}$,$y_{16}$,$z_{16}$


  • Above 285 K, the structure exhibits an incommensurate charge density wave. This data was taken at 370 K, so the structure given here is only approximate. Below 285 K the CDW is locked in, leading to the low–temperature Mo8O23 structure.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}b \, \mathbf{\hat{y}} & \left(2c\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo I} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{2}a - z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo I} \\ \mathbf{B}_{5} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo I} \\ \mathbf{B}_{6} & = & x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{2}a + z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo I} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo II} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo II} \\ \mathbf{B}_{9} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo II} \\ \mathbf{B}_{10} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo II} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo III} \\ \mathbf{B}_{12} & = & -x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{4}a - z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo III} \\ \mathbf{B}_{13} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo III} \\ \mathbf{B}_{14} & = & x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{4}a + z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo III} \\ \mathbf{B}_{15} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo IV} \\ \mathbf{B}_{16} & = & -x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{5}a - z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo IV} \\ \mathbf{B}_{17} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo IV} \\ \mathbf{B}_{18} & = & x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{5}a + z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{Mo IV} \\ \mathbf{B}_{19} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & -x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{6}a - z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O II} \\ \mathbf{B}_{21} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{6}a + z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O III} \\ \mathbf{B}_{24} & = & -x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{7}a - z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O III} \\ \mathbf{B}_{25} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O III} \\ \mathbf{B}_{26} & = & x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{7}a + z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O III} \\ \mathbf{B}_{27} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IV} \\ \mathbf{B}_{28} & = & -x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{8}a - z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{8}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IV} \\ \mathbf{B}_{29} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IV} \\ \mathbf{B}_{30} & = & x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{8}a + z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{8}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IV} \\ \mathbf{B}_{31} & = & x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O V} \\ \mathbf{B}_{32} & = & -x_{9} \, \mathbf{a}_{1} + y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{9}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{9}a - z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{9}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O V} \\ \mathbf{B}_{33} & = & -x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O V} \\ \mathbf{B}_{34} & = & x_{9} \, \mathbf{a}_{1}-y_{9} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{9}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{9}a + z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{9}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O V} \\ \mathbf{B}_{35} & = & x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VI} \\ \mathbf{B}_{36} & = & -x_{10} \, \mathbf{a}_{1} + y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{10}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{10}a - z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{10}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VI} \\ \mathbf{B}_{37} & = & -x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VI} \\ \mathbf{B}_{38} & = & x_{10} \, \mathbf{a}_{1}-y_{10} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{10}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{10}a + z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{10}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VI} \\ \mathbf{B}_{39} & = & x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VII} \\ \mathbf{B}_{40} & = & -x_{11} \, \mathbf{a}_{1} + y_{11} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{11}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{11}a - z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{11}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VII} \\ \mathbf{B}_{41} & = & -x_{11} \, \mathbf{a}_{1}-y_{11} \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VII} \\ \mathbf{B}_{42} & = & x_{11} \, \mathbf{a}_{1}-y_{11} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{11}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{11}a + z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{11}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VII} \\ \mathbf{B}_{43} & = & x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & \left(x_{12}a+z_{12}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + z_{12}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VIII} \\ \mathbf{B}_{44} & = & -x_{12} \, \mathbf{a}_{1} + y_{12} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{12}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{12}a - z_{12}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{12}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VIII} \\ \mathbf{B}_{45} & = & -x_{12} \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & \left(-x_{12}a-z_{12}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}}-z_{12}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VIII} \\ \mathbf{B}_{46} & = & x_{12} \, \mathbf{a}_{1}-y_{12} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{12}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{12}a + z_{12}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{12}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O VIII} \\ \mathbf{B}_{47} & = & x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & \left(x_{13}a+z_{13}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{13}b \, \mathbf{\hat{y}} + z_{13}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IX} \\ \mathbf{B}_{48} & = & -x_{13} \, \mathbf{a}_{1} + y_{13} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{13}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{13}a - z_{13}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{13}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{13}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IX} \\ \mathbf{B}_{49} & = & -x_{13} \, \mathbf{a}_{1}-y_{13} \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & \left(-x_{13}a-z_{13}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{13}b \, \mathbf{\hat{y}}-z_{13}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IX} \\ \mathbf{B}_{50} & = & x_{13} \, \mathbf{a}_{1}-y_{13} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{13}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{13}a + z_{13}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{13}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{13}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O IX} \\ \mathbf{B}_{51} & = & x_{14} \, \mathbf{a}_{1} + y_{14} \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & \left(x_{14}a+z_{14}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{14}b \, \mathbf{\hat{y}} + z_{14}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O X} \\ \mathbf{B}_{52} & = & -x_{14} \, \mathbf{a}_{1} + y_{14} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{14}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{14}a - z_{14}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{14}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{14}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O X} \\ \mathbf{B}_{53} & = & -x_{14} \, \mathbf{a}_{1}-y_{14} \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & \left(-x_{14}a-z_{14}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{14}b \, \mathbf{\hat{y}}-z_{14}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O X} \\ \mathbf{B}_{54} & = & x_{14} \, \mathbf{a}_{1}-y_{14} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{14}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{14}a + z_{14}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{14}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{14}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O X} \\ \mathbf{B}_{55} & = & x_{15} \, \mathbf{a}_{1} + y_{15} \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & \left(x_{15}a+z_{15}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{15}b \, \mathbf{\hat{y}} + z_{15}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XI} \\ \mathbf{B}_{56} & = & -x_{15} \, \mathbf{a}_{1} + y_{15} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{15}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{15}a - z_{15}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{15}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{15}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XI} \\ \mathbf{B}_{57} & = & -x_{15} \, \mathbf{a}_{1}-y_{15} \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & \left(-x_{15}a-z_{15}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{15}b \, \mathbf{\hat{y}}-z_{15}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XI} \\ \mathbf{B}_{58} & = & x_{15} \, \mathbf{a}_{1}-y_{15} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{15}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{15}a + z_{15}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{15}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{15}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XI} \\ \mathbf{B}_{59} & = & x_{16} \, \mathbf{a}_{1} + y_{16} \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & \left(x_{16}a+z_{16}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{16}b \, \mathbf{\hat{y}} + z_{16}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XII} \\ \mathbf{B}_{60} & = & -x_{16} \, \mathbf{a}_{1} + y_{16} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{16}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{16}a - z_{16}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{16}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{16}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XII} \\ \mathbf{B}_{61} & = & -x_{16} \, \mathbf{a}_{1}-y_{16} \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & \left(-x_{16}a-z_{16}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{16}b \, \mathbf{\hat{y}}-z_{16}c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XII} \\ \mathbf{B}_{62} & = & x_{16} \, \mathbf{a}_{1}-y_{16} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{16}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{16}a + z_{16}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{16}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{16}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4g\right) & \mbox{O XII} \\ \end{array} \]

References

  • H. Fujishita, M. Sato, S. Sato, and S. Hoshino, Structure Determination of low–dimensional conductor Mo8O23, J. Solid State Chem. 66, 40–46 (1987), doi:10.1016/0022-4596(87)90218-0.

Geometry files


Prototype Generator

aflow --proto=A8B23_mP62_13_4g_c11g --params=

Species:

Running:

Output: