K3W2Cl9 ($K7_{1}$) Structure : A9B3C2_hP28_176_hi_af_f

Picture of Structure; Click for Big Picture
Prototype : Cl9K3W2
AFLOW prototype label : A9B3C2_hP28_176_hi_af_f
Strukturbericht designation : $K7_{1}$
Pearson symbol : hP28
Space group number : 176
Space group symbol : $P6_{3}/m$
AFLOW prototype command : aflow --proto=A9B3C2_hP28_176_hi_af_f
--params=
$a$,$c/a$,$z_{2}$,$z_{3}$,$x_{4}$,$y_{4}$,$x_{5}$,$y_{5}$,$z_{5}$


Other compounds with this structure

  • K3Ti2Cl9, Rb3Ti2Cl9, K3Mo2Br9, K3Ti2Br9, and Rb3Os2Br9

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{K I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{K I} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{K II} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{K II} \\ \mathbf{B}_{5} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{K II} \\ \mathbf{B}_{6} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{K II} \\ \mathbf{B}_{7} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{W} \\ \mathbf{B}_{8} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{W} \\ \mathbf{B}_{9} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{W} \\ \mathbf{B}_{10} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{W} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Cl I} \\ \mathbf{B}_{12} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Cl I} \\ \mathbf{B}_{13} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Cl I} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Cl I} \\ \mathbf{B}_{15} & = & y_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Cl I} \\ \mathbf{B}_{16} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Cl I} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{18} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{19} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{20} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{21} & = & y_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{22} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{23} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{24} & = & y_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{25} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{26} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{27} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \mathbf{B}_{28} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{Cl II} \\ \end{array} \]

References

  • W. H. Watson, Jr. and J. Waser, Refinement of the structure of tripotassiumditungsten enneachloride, K3W2Cl9, Acta Cryst. 11, 689–692 (1958), doi:10.1107/S0365110X58001869.

Geometry files


Prototype Generator

aflow --proto=A9B3C2_hP28_176_hi_af_f --params=

Species:

Running:

Output: