Cs3Tl2Cl9 ($K7_{2}$) Structure : A9B3C2_hR28_167_ef_e_c

Picture of Structure; Click for Big Picture
Prototype : Cl9Cs3Tl2
AFLOW prototype label : A9B3C2_hR28_167_ef_e_c
Strukturbericht designation : $K7_{2}$
Pearson symbol : hR28
Space group number : 167
Space group symbol : $R\bar{3}c$
AFLOW prototype command : aflow --proto=A9B3C2_hR28_167_ef_e_c
--params=
$a$,$c/a$,$x_{1}$,$x_{2}$,$x_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • Cs3Dy2Br9, Cs3Er2Br9, Cs3Ho2Br9, Cs3Lu2Cl9, Cs3Tb2Br9, Cs3Yb2Br9, Ba3Os2O9, and Ba3W2O9

  • (Hoard, 1935) followed by (Downs, 2003), give the atomic coordinates in the style of (Wyckoff, 1922), who lists space group $D3d6 (the Schönflies notation for space group $R\overline{3}c$) as space group #203, instead of #167, and uses an origin which corresponds to $(1/4, 1/4, 1/4)$ in our lattice coordinates. We used FINDSYM to convert this into our standard setting for space group #167.

Rhombohedral primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac{1}{\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & - \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Tl} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Tl} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Tl} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Tl} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl I} \\ \mathbf{B}_{6} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl I} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl I} \\ \mathbf{B}_{8} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -a\left(\frac{1}{2}x_{2}+\frac{3}{8}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl I} \\ \mathbf{B}_{9} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8}-\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}}-a\left(\frac{\sqrt{3}}{2}x_{2}+\frac{5}{8\sqrt{3}}\right) \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl I} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl I} \\ \mathbf{B}_{11} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{2}x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cs} \\ \mathbf{B}_{12} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{3}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cs} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cs} \\ \mathbf{B}_{14} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -a\left(\frac{1}{2}x_{3}+\frac{3}{8}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{3}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cs} \\ \mathbf{B}_{15} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8}-\frac{1}{2}x_{3}\right)a \, \mathbf{\hat{x}}-a\left(\frac{\sqrt{3}}{2}x_{3}+\frac{5}{8\sqrt{3}}\right) \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cs} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cs} \\ \mathbf{B}_{17} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}-z_{4}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{4}+\frac{1}{\sqrt{3}}y_{4}-\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{4}+y_{4}+z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{18} & = & z_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-y_{4}+z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{\sqrt{3}}x_{4}-\frac{1}{2\sqrt{3}}y_{4}-\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{4}+y_{4}+z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{19} & = & y_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{4}-\frac{1}{2\sqrt{3}}y_{4}+\frac{1}{\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{4}+y_{4}+z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}-z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{4}-\frac{1}{\sqrt{3}}y_{4}+\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - \frac{1}{3}x_{4} - \frac{1}{3}y_{4} - \frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{21} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-y_{4}+z_{4}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{\sqrt{3}}x_{4}+\frac{1}{2\sqrt{3}}y_{4}+\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - \frac{1}{3}x_{4} - \frac{1}{3}y_{4} - \frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{4}+\frac{1}{2\sqrt{3}}y_{4}-\frac{1}{\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - \frac{1}{3}x_{4} - \frac{1}{3}y_{4} - \frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{23} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{4}+z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{4}-\frac{1}{\sqrt{3}}y_{4}+\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}}-\frac{1}{3}\left(x_{4}+y_{4}+z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{24} & = & -z_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(y_{4}-z_{4}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{\sqrt{3}}x_{4}+\frac{1}{2\sqrt{3}}y_{4}+\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}}-\frac{1}{3}\left(x_{4}+y_{4}+z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{25} & = & -y_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{4}+\frac{1}{2\sqrt{3}}y_{4}-\frac{1}{\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}}-\frac{1}{3}\left(x_{4}+y_{4}+z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{4}+z_{4}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{4}+\frac{1}{\sqrt{3}}y_{4}-\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +\frac{1}{3}x_{4} + \frac{1}{3}y_{4} + \frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(y_{4}-z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{\sqrt{3}}x_{4}-\frac{1}{2\sqrt{3}}y_{4}-\frac{1}{2\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +\frac{1}{3}x_{4} + \frac{1}{3}y_{4} + \frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{4}-\frac{1}{2\sqrt{3}}y_{4}+\frac{1}{\sqrt{3}}z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +\frac{1}{3}x_{4} + \frac{1}{3}y_{4} + \frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{Cl II} \\ \end{array} \]

References

  • J. L. Hoard and L. Goldstein, The Crystal Structure of Cesium Enneachlordithalliate, Cs3Tl2Cl9, J. Chem. Phys. 3, 199–202 (1935), doi:10.1063/1.1749633.
  • R. W. G. Wyckoff, The Analytical Expression of the Results of the Theory of Space–Groups, vol. 318 (Carnegie Institution of Washington, Washington DC, 1922).

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A9B3C2_hR28_167_ef_e_c --params=

Species:

Running:

Output: