BaCd11 Structure : AB11_tI48_141_a_bdi

Picture of Structure; Click for Big Picture
Prototype : BaCd11
AFLOW prototype label : AB11_tI48_141_a_bdi
Strukturbericht designation : None
Pearson symbol : tI48
Space group number : 141
Space group symbol : $I4_{1}/amd$
AFLOW prototype command : aflow --proto=AB11_tI48_141_a_bdi
--params=
$a$,$c/a$,$x_{4}$,$y_{4}$,$z_{4}$


Other compounds with this structure

  • SrCd11, LaZn11, CeZn11, and PrZn11

  • (Sanderson, 1953) gave the atomic positions in setting 1 of space group #141. We used FINDSYM to transform this to the standard setting 2.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ba} \\ \mathbf{B}_{2} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}c \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ba} \\ \mathbf{B}_{3} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cd I} \\ \mathbf{B}_{4} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Cd I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Cd II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Cd II} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & - \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Cd II} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Cd II} \\ \mathbf{B}_{9} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{11} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{12} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{14} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{15} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{16} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{17} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{19} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}}-a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{20} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}}-c\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{21} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{22} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{23} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-y_{4}\right)a \, \mathbf{\hat{x}}-a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \mathbf{B}_{24} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(- \frac{1}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(32i\right) & \mbox{Cd III} \\ \end{array} \]

References

Geometry files


Prototype Generator

aflow --proto=AB11_tI48_141_a_bdi --params=

Species:

Running:

Output: