Predicted High–Pressure YCaH12 Structure : AB12C_cP14_221_a_h_b

Picture of Structure; Click for Big Picture
Prototype : CaH12Y
AFLOW prototype label : AB12C_cP14_221_a_h_b
Strukturbericht designation : None
Pearson symbol : cP14
Space group number : 221
Space group symbol : $Pm\bar{3}m$
AFLOW prototype command : aflow --proto=AB12C_cP14_221_a_h_b
--params=
$a$,$x_{3}$


  • This structure was determined by ab initio methods and is predicted to be stable in the pressure range 180–257 GPa, with $T_{\mathrm{c}}=230$ K at 180 GPa. We show the predicted structure at 200 GPa.

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \mbox{Ca} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(1b\right) & \mbox{Y} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{4} & = & -x_{3} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{11} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{12} & = & -x_{3} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{13} & = & \frac{1}{2} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \mathbf{B}_{14} & = & \frac{1}{2} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(12h\right) & \mbox{H} \\ \end{array} \]

References

  • H. Xie, D. Duan, Z. Shao, H. Song, Y. Wang, X. Xiao, D. Li, F. Tian, B. Liu, and T. Cui, High–temperature superconductivity in ternary clathrate YCaH12 under high pressures, J. Phys.: Condens. Matter 31, 245404 (2019), doi:10.1088/1361-648X/ab09b4.

Geometry files


Prototype Generator

aflow --proto=AB12C_cP14_221_a_h_b --params=

Species:

Running:

Output: