Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C2_tI10_139_a_d_e.Li2CN2

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Li2CN2 Structure : AB2C2_tI10_139_a_d_e

Picture of Structure; Click for Big Picture
Prototype : CLi2N2
AFLOW prototype label : AB2C2_tI10_139_a_d_e
Strukturbericht designation : None
Pearson symbol : tI10
Space group number : 139
Space group symbol : $I4/mmm$
AFLOW prototype command : aflow --proto=AB2C2_tI10_139_a_d_e
--params=
$a$,$c/a$,$z_{3}$


  • This structure has the same AFLOW prototype label, AB2C2_tI10_139_a_d_e, as autunite, Ca(UO2)2(PO4)2·10.5H2O ($H5_{9}$). They are generated by the same symmetry operations with different sets of parameters (\texttt––params) specified in their corresponding CIF files.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \text{C} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Li} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Li} \\ \mathbf{B}_{4} & = & z_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} & = & z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \text{N} \\ \mathbf{B}_{5} & = & -z_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2} & = & -z_{3}c \, \mathbf{\hat{z}} & \left(4e\right) & \text{N} \\ \end{array} \]

References

  • M. G. Down, M. J. Haley, P. Hubberstey, R. J. Pulham, and A. E. Thunder, Solutions of lithium salts in liquid lithium: preparation and X–ray crystal structure of the dilithium salt of carbodi–imide (cyanamide), J. Chem. Soc.,\ Dalton Trans. 1407–1411 (1978), doi:10.1039/DT9780001407.

Found in

  • A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013), doi:10.1063/1.4812323.

Geometry files


Prototype Generator

aflow --proto=AB2C2_tI10_139_a_d_e --params=

Species:

Running:

Output: