$G7_{5}$ (PbCO3 · PbCl2, Phosgenite) (obsolete) Structure : AB2C3D2_tP16_90_c_f_ce_e

Picture of Structure; Click for Big Picture
Prototype : CCl2O3Pb2
AFLOW prototype label : AB2C3D2_tP16_90_c_f_ce_e
Strukturbericht designation : $G7_{5}$
Pearson symbol : tP16
Space group number : 90
Space group symbol : $P42_{1}2$
AFLOW prototype command : aflow --proto=AB2C3D2_tP16_90_c_f_ce_e
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$x_{4}$,$x_{5}$


  • (Onorato, 1934) made an early determination of the structure of phosgenite, and (Gottfried, 1937) assigned it the Strukturbericht designation $G7_{5}$. However, the "proposed structure [was] based on photographic data and partly on steric considerations" (Giuseppetti, 1974). Subsequent investigations showed that the true phosgenite structure was in space group $P4/mbm$ #127. We list the original structure here as part of the historical record.

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{C} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{1}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{C} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{O I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{O I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{Pb} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{Pb} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{Pb} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \mbox{Pb} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Cl} \\ \mathbf{B}_{14} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Cl} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Cl} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Cl} \\ \end{array} \]

References

  • E. Onorato, La struttura della Fosgenite, Period. Mineral. 5, 37–61 (1934).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • G. Giuseppetti and C. Tadini, Reexamination of the crystal structure of phosgenite, Pb2Cl2(CO3), Tschermaks\ Min. Petr. Mitt. 21, 101–109 (1974), doi:10.1007/BF01081262.

Geometry files


Prototype Generator

aflow --proto=AB2C3D2_tP16_90_c_f_ce_e --params=

Species:

Running:

Output: