Na2CaSiO4 ($S6_{6}$) Structure : AB2C4D_cP32_198_a_2a_ab_a

Picture of Structure; Click for Big Picture
Prototype : CaNa2O4Si
AFLOW prototype label : AB2C4D_cP32_198_a_2a_ab_a
Strukturbericht designation : $S6_{6}$
Pearson symbol : cP32
Space group number : 198
Space group symbol : $P2_{1}3$
AFLOW prototype command : aflow --proto=AB2C4D_cP32_198_a_2a_ab_a
--params=
$a$,$x_{1}$,$x_{2}$,$x_{3}$,$x_{4}$,$x_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


Other compounds with this structure

  • Li2SrSi4

  • Substitution of small fractions of rare earth elements onto the Ca site can produce photoluminescence.
  • This is the crystal structure found by (Barth, 1932). The coordinates on 159 of (Hermann, 1937) are incorrect, as they do not correctly transform from Barth and Posnjak's coordinates in degrees to fractional coordinates. See (Hermann, 1937) 557–8 for the correct coordinates.
  • (Dollase, 1991) found that the SiO4 tetrahedra were orientationally disordered, and that the resulting Na2Ca(SiO4) structure took on the Heusler ($L1_{2}$) structure.

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + x_{1}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ca} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ca} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ca} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{y}}-x_{1}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ca} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na I} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na I} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na I} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Na II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Si} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Si} \\ \mathbf{B}_{19} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Si} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Si} \\ \mathbf{B}_{21} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{y}}-z_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & z_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + y_{6} \, \mathbf{a}_{3} & = & z_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + y_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{2}-y_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{y}}-y_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{28} & = & -z_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{3} & = & -z_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{29} & = & y_{6} \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}} + z_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{30} & = & -y_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{31} & = & \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{6}\right)a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{1}-z_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{6}\right)a \, \mathbf{\hat{x}}-z_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{6}\right)a \, \mathbf{\hat{z}} & \left(12b\right) & \mbox{O II} \\ \end{array} \]

References

  • T. F. W. Barth and E. Posnjak, Silicate structures of the cristobalite type: II. The crystal structure of Na2CaSiO4, Zeitschrift für Kristallographie – Crystalline Materials 81, 370–375 (1932), doi:10.1524/zkri.1932.81.1.370.
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • W. A. Dollase and C. R. Ross II, Crystal structure of orientationally disordered Na2(Ca,Sr)SiO4, Zeitschrift für Kristallographie – Crystalline Materials 197, 13–26 (1991), doi:10.1524/zkri.1991.197.1-2.13.

Geometry files


Prototype Generator

aflow --proto=AB2C4D_cP32_198_a_2a_ab_a --params=

Species:

Running:

Output: