Barytocalcite (BaCa(CO3)2) Structure : AB2CD6_mP20_11_e_2e_e_2e2f

Picture of Structure; Click for Big Picture
Prototype : BaC2CaO6
AFLOW prototype label : AB2CD6_mP20_11_e_2e_e_2e2f
Strukturbericht designation : None
Pearson symbol : mP20
Space group number : 11
Space group symbol : $P2_{1}/m$
AFLOW prototype command : aflow --proto=AB2CD6_mP20_11_e_2e_e_2e2f
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$,$x_{8}$,$y_{8}$,$z_{8}$



Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Ba} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Ba} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{C I} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{C I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{C II} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{C II} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Ca} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Ca} \\ \mathbf{B}_{9} & = & x_{5} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O I} \\ \mathbf{B}_{10} & = & -x_{5} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O I} \\ \mathbf{B}_{11} & = & x_{6} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & -x_{6} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O II} \\ \mathbf{B}_{13} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & -x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O III} \\ \mathbf{B}_{16} & = & x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O III} \\ \mathbf{B}_{17} & = & x_{8} \, \mathbf{a}_{1} + y_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{8}b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{18} & = & -x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{8}\right) \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{8}\right)b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{19} & = & -x_{8} \, \mathbf{a}_{1}-y_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{8}b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \mathbf{B}_{20} & = & x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{8}\right) \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{8}\right)b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{O IV} \\ \end{array} \]

References

  • B. Dickens and J. S. Bowen, The Crystal Structure of BaCa(CO3)2 (barytocalcite), J. Res. Nat. Stand. Sec. A 75, 197–203 (1971), doi:10.6028/jres.075A.020.

Found in

  • D. Spahr, L. Bayarjargal, V. Vinograd, R. Luchitskaia, V. Milman, and B. Winkler, A new BaCa(CO3)2 polymorph, Acta Crystallogr. Sect. B Struct. Sci. 75, 291–300 (2019), doi:10.1107/S2052520619003238.

Geometry files


Prototype Generator

aflow --proto=AB2CD6_mP20_11_e_2e_e_2e2f --params=

Species:

Running:

Output: