Pyrite (FeS2, $C2$) Structure: AB2_cP12_205_a_c

Picture of Structure; Click for Big Picture
Prototype : FeS2
AFLOW prototype label : AB2_cP12_205_a_c
Strukturbericht designation : $C2$
Pearson symbol : cP12
Space group number : 205
Space group symbol : $\mbox{Pa}\bar{3}$
AFLOW prototype command : aflow --proto=AB2_cP12_205_a_c
--params=
$a$,$x_{2}$


Other compounds with this structure

  • AuSb2, CaC2, CoS2, MnS2, NiS2, NiSe2, OsS2, OsTe2, PdAs2, PtAs2, PtBi2, RhSe2, RuS2

  • (Bayliss, 1997) gives crystalline data for weakly anisotropic pyrite which we have tabulated as P1 FeS2. He also gives crystallographic data for the cubic pyrite structure, which we report here. Also see the C18 (marcasite) FeS2 structure.

Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\mathbf{\hat{x}}} \\ \mathbf{a}_2 & = & a \, \mathbf{\mathbf{\hat{y}}} \\ \mathbf{a}_3 & = & a \, \mathbf{\mathbf{\hat{z}}} \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = &0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = &0 \mathbf{\mathbf{\hat{x}}} + 0 \mathbf{\mathbf{\hat{y}}} + 0 \mathbf{\mathbf{\hat{z}}} & \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\mathbf{\hat{x}}}+ \frac12 \, a \, \mathbf{\mathbf{\hat{z}}}& \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = &\frac12 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\mathbf{\hat{y}}}+ \frac12 \, a \, \mathbf{\mathbf{\hat{z}}}& \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{4} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &\frac12 \, a \, \mathbf{\mathbf{\hat{x}}}+ \frac12 \, a \, \mathbf{\mathbf{\hat{y}}}& \left(4a\right) & \mbox{Fe} \\ \mathbf{B}_{5} & = &x_{2} \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{6} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{7} & = &- x_{2} \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &- x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{8} & = &\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &\left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{9} & = &- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &- x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}- x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{10} & = &\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{11} & = &x_{2} \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &x_{2} \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \mathbf{B}_{12} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &\left(\frac12 - x_{2}\right) \, a \, \mathbf{\mathbf{\hat{x}}}+ \left(\frac12 + x_{2}\right) \, a \, \mathbf{\mathbf{\hat{y}}}+ x_{2} \, a \, \mathbf{\mathbf{\hat{z}}}& \left(8c\right) & \mbox{S} \\ \end{array} \]

References

  • P. Bayliss, Crystal structure refinement of a weakly anisotropic pyrite, Am. Mineral. 62, 1168–1172 (1977).

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=AB2_cP12_205_a_c --params=

Species:

Running:

Output: