HgI2 Structure: AB2_tP12_115_j_egi

Picture of Structure; Click for Big Picture
Prototype : HgI2
AFLOW prototype label : AB2_tP12_115_j_egi
Strukturbericht designation : None
Pearson symbol : tP12
Space group number : 115
Space group symbol : $P\bar{4}m2$
AFLOW prototype command : aflow --proto=AB2_tP12_115_j_egi
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$x_{4}$,$z_{4}$


Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{I I} \\ \mathbf{B}_{2} & = & -z_{1} \, \mathbf{a}_{3} & = & -z_{1}c \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{I I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2g\right) & \mbox{I II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{2}c \, \mathbf{\hat{z}} & \left(2g\right) & \mbox{I II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{I III} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \mathbf{B}_{11} & = & -x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(4j\right) & \mbox{Hg} \\ \end{array} \]

References

  • M. Hostettler, H. Birkedal, and D. Schwarzenbach, The structure of orange HgI2. I. Polytypic layer structure, Acta Crystallogr. Sect. B Struct. Sci. 58, 903–913 (2002), doi:10.1107/S010876810201618X.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=AB2_tP12_115_j_egi --params=

Species:

Running:

Output: