(NH4)3AlF6 ($J2_{1}$) Structure : AB30C16D3_cF200_225_a_ej_2f_bc

Picture of Structure; Click for Big Picture
Prototype : AlF6H12N3
AFLOW prototype label : AB30C16D3_cF200_225_a_ej_2f_bc
Strukturbericht designation : $J2_{1}$
Pearson symbol : cF200
Space group number : 225
Space group symbol : $Fm\bar{3}m$
AFLOW prototype command : aflow --proto=AB30C16D3_cF200_225_a_ej_2f_bc
--params=
$a$,$x_{4}$,$x_{5}$,$x_{6}$,$y_{7}$,$z_{7}$


Other compounds with this structure

  • (NH4)3FeF6, (NH4)3TiOF5, (NH4)3Fe(NO2)6, K3Ir(NO2)6, Cs3Ir(NO2)6, Rb3Ir(NO2)6, and Tl3Ir(NO2)6

  • Early determinations of this structure placed all of the fluorine atoms on the ($24e$) site and were not able to determine the positions of the hydrogen atoms in the ammonium ion. This structure was designated $H71$ ($H71) by (Ewald, 1931), renamed $I21 by (Hermann, 1937) and finally given the label $J2_{1}$ by (Gottfried, 1937).
  • The structure determined by (Udovenko, 2003) found that the fluorine atoms are split onto two sites, F–I, on Wyckoff position ($24e$) is 1/3 filled, and F–II, on ($96j$) is 1/6 filled. The positions are so close, however, that a reasonable approximation can be made by eliminating the ($96j$) site and fully occupying the ($24e$) site. The H–I ($32f$) site is fully occupied, while the H–II ($32f$) site is 50% occupied.

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Al} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{N I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{N II} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{N II} \\ \mathbf{B}_{5} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{F I} \\ \mathbf{B}_{6} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{F I} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{F I} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{F I} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{F I} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{F I} \\ \mathbf{B}_{11} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{12} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-3x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1}-3x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{14} & = & -3x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{15} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + 3x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{16} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{17} & = & -x_{5} \, \mathbf{a}_{1} + 3x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{18} & = & 3x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H I} \\ \mathbf{B}_{19} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{20} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-3x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{21} & = & x_{6} \, \mathbf{a}_{1}-3x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{22} & = & -3x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{23} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + 3x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{24} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{25} & = & -x_{6} \, \mathbf{a}_{1} + 3x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{26} & = & 3x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-x_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + x_{6}a \, \mathbf{\hat{z}} & \left(32f\right) & \mbox{H II} \\ \mathbf{B}_{27} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{y}} + z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{28} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{y}} + z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{29} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{y}}-z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{30} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{y}}-z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{31} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{32} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{33} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{34} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{35} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{36} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{37} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{38} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{39} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{40} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}}-z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{41} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & y_{7}a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{42} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -y_{7}a \, \mathbf{\hat{x}} + z_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{43} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{y}}-y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{44} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{y}} + y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{45} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{y}}-y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{46} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{y}} + y_{7}a \, \mathbf{\hat{z}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{47} & = & \left(y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{48} & = & \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}+z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{3} & = & z_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{49} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}} + y_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \mathbf{B}_{50} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + \left(y_{7}-z_{7}\right) \, \mathbf{a}_{2} + \left(-y_{7}-z_{7}\right) \, \mathbf{a}_{3} & = & -z_{7}a \, \mathbf{\hat{x}}-y_{7}a \, \mathbf{\hat{y}} & \left(96j\right) & \mbox{F II} \\ \end{array} \]

References

  • A. A. Udovenko, N. M. Laptash, and I. G. Maslennikova, Orientation disorder in ammonium elpasolites: Crystal structures of (NH4)3AlF6, (NH4)3TiOF5 and (NH4)3FeF6, J. Fluor. Chem. 124, 5–15 (2003), doi:10.1016/S0022-1139(03)00166-0.
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913–1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=AB30C16D3_cF200_225_a_ej_2f_bc --params=

Species:

Running:

Output: