K3Co(NO2)6 ($J2_{4}$) Structure : AB3C6D12_cF88_202_a_bc_e_h

Picture of Structure; Click for Big Picture
Prototype : CoK3N6O12
AFLOW prototype label : AB3C6D12_cF88_202_a_bc_e_h
Strukturbericht designation : $J2_{4}$
Pearson symbol : cF88
Space group number : 202
Space group symbol : $Fm\bar{3}$
AFLOW prototype command : aflow --proto=AB3C6D12_cF88_202_a_bc_e_h
--params=
$a$,$x_{4}$,$y_{5}$,$z_{5}$


Other compounds with this structure

  • (NH4)2AgBi(NO2)6, (NH4)2LiBi(NO2)6, (NH4)2NaBi(NO2)6, (NH4)2NaCo(NO2)6, (NH4)2NaRh(NO2)6, (NH4)3Co(NO2)6, Cs2AgBi(NO2)6, Cs2LiBi(NO2)6, Cs2NaBi(NO2)6, Cs3Bi(NO2)6, K2LiBi(NO2)6, K2NaBi(NO2)6, K2NaCo(NO2)6, K2PbCu(NO2)6, K3Ca(NO2)6, Rb2AgBi(NO2)6, Rb2NaBi(NO2)6, Tl2AgBi(NO2)6, Tl2LiBi(NO2)6, and Tl2NaBi(NO2)6

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Co} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{K I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{K II} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{K II} \\ \mathbf{B}_{5} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{6} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{y}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{z}} & \left(24e\right) & \mbox{N} \\ \mathbf{B}_{11} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{12} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{13} & = & \left(y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{14} & = & \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{15} & = & \left(y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{16} & = & \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{17} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{18} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{19} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{20} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{21} & = & \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{O} \\ \mathbf{B}_{22} & = & \left(y_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{O} \\ \end{array} \]

References

  • M. van Driel and H. J. Verweel, Über die Struktur der Tripelnitrite, Zeitschrift für Kristallographie – Crystalline Materials 95, 308–314 (1936), doi:10.1524/zkri.1936.95.1.308.

Found in

  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Geometry files


Prototype Generator

aflow --proto=AB3C6D12_cF88_202_a_bc_e_h --params=

Species:

Running:

Output: