Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C9D_hP28_173_a_c_3c_b

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

La3BWO9 ($P6_{3}$) Structure : AB3C9D_hP28_173_a_c_3c_b

Picture of Structure; Click for Big Picture
Prototype : BLa3O9W
AFLOW prototype label : AB3C9D_hP28_173_a_c_3c_b
Strukturbericht designation : None
Pearson symbol : hP28
Space group number : 173
Space group symbol : $P6_{3}$
AFLOW prototype command : aflow --proto=AB3C9D_hP28_173_a_c_3c_b
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


Other compounds with this structure

  • La3BWO9, Ce3BWO9, Nd3BWO9, Sm3BWO9, Gd3BWO9, Tb3BWO9, Dy3BWO9, and Ho3BWO9

  • Most refinements of the BLa3O9W structure, including (Ashtar, 2020) place it in hexagonal space group $P6_{3}$ #173. (Han, 2018) find a better fit to the data by refining it in the trigonal $P3$ #143 space group, which places the lanthanum atoms on two independent crystallographic sites. As this may be due to the presence of bismuth impurities, which (Han, 2018) place on the lanthanum site, while (Ashtar, 2020) claim to have very pure samples, we withhold judgment on which structure is correct and present both.
  • Space group $P6_3$ does not specify the origin of the $z$–axis. Here it is set so that the coordinate of the tungsten atom is $z_{2} = 1/4$.

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \text{B} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(2a\right) & \text{B} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \text{W} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(2b\right) & \text{W} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{La} \\ \mathbf{B}_{6} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{La} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{La} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{La} \\ \mathbf{B}_{9} & = & y_{3} \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{La} \\ \mathbf{B}_{10} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{La} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{12} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{13} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{15} & = & y_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{16} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O I} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{18} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{19} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{20} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{21} & = & y_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{22} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O II} \\ \mathbf{B}_{23} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{6}+y_{6}\right)a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{24} & = & -y_{6} \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{6}-y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{25} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}+\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{26} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{6}-y_{6}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{27} & = & y_{6} \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{6}+y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \mathbf{B}_{28} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(x_{6}-\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(6c\right) & \text{O III} \\ \end{array} \]

References

  • J. Han, F. Pan, M. S. Molokeev, J. Dai, M. Peng, W. Zhou, and J. Wang, Redefinition of Crystal Structure and Bi3+ Yellow Luminescence with Strong Near–Ultraviolet Excitation in La3BWO9:Bi3+ Phosphor for White Light–Emitting Diodes, ACS Appl. Mater. Interfaces 10, 13660–13668 (2018), doi:10.1021/acsami.8b00808.
  • M. Ashtar, J. Guo, Z. Wan, Y. Wang, G. Gong, Y. Liu, Y. Su, and Z. Tian, A new family of disorder–free Rare–Earth–based kagomé lattice magnets: structure and magnetic characterizations of $RE$3BWO9 ($RE$ = Pr, Nd, Gd–Ho) Boratotungstates, http://arxiv.org/abs/2002.05420. ArXiv:2002.05420 [cond–mat.mtrl–sci].

Geometry files


Prototype Generator

aflow --proto=AB3C9D_hP28_173_a_c_3c_b --params=

Species:

Running:

Output: