KSbO3 (High–temperature) Structure: AB3C_cP60_201_be_fh_g

Picture of Structure; Click for Big Picture
Prototype : KSbO3
AFLOW prototype label : AB3C_cP60_201_be_fh_g
Strukturbericht designation : None
Pearson symbol : cP60
Space group number : 201
Space group symbol : $Pn\bar{3}$
AFLOW prototype command : aflow --proto=AB3C_cP60_201_be_fh_g
--params=
$a$,$x_{2}$,$x_{3}$,$x_{4}$,$x_{5}$,$y_{5}$,$z_{5}$


Simple Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{K I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4b\right) & \mbox{K I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{K I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{K I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{8} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{2}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{9} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{12} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{K II} \\ \mathbf{B}_{13} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{3}\right)a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & -x_{3} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{21} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{22} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{23} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{24} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{O I} \\ \mathbf{B}_{25} & = & x_{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{27} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{28} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{29} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{30} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{31} & = & -x_{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{32} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{33} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{34} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{35} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{36} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(12g\right) & \mbox{Sb} \\ \mathbf{B}_{37} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{40} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{41} & = & z_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + y_{5} \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + y_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{42} & = & z_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{3} & = & z_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - y_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + y_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{y}} + y_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - z_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - y_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{45} & = & y_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{46} & = & \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{5}\right)a \, \mathbf{\hat{x}} + z_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{47} & = & y_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{48} & = & \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - z_{5}\right)a \, \mathbf{\hat{y}} + x_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{49} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{50} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)a \, \mathbf{\hat{y}}-z_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{52} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{53} & = & -z_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-y_{5} \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-y_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{54} & = & -z_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{3} & = & -z_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{55} & = & \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2}-y_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}}-y_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{56} & = & \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{57} & = & -y_{5} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{58} & = & \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{5}\right)a \, \mathbf{\hat{x}}-z_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{59} & = & -y_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \mathbf{B}_{60} & = & \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{2}-x_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{5}\right)a \, \mathbf{\hat{y}}-x_{5}a \, \mathbf{\hat{z}} & \left(24h\right) & \mbox{O II} \\ \end{array} \]

References

  • P. Spiegelberg, X–ray studies on potassium antimonates, Ark. Kem. Mineral. Geol. 14A, 1–12 (1940).

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=AB3C_cP60_201_be_fh_g --params=

Species:

Running:

Output: