H3Cl (400 GPa) Structure: AB3_mP16_10_mn_3m3n

Picture of Structure; Click for Big Picture
Prototype : H3Cl
AFLOW prototype label : AB3_mP16_10_mn_3m3n
Strukturbericht designation : None
Pearson symbol : mP16
Space group number : 10
Space group symbol : $P2/m$
AFLOW prototype command : aflow --proto=AB3_mP16_10_mn_3m3n
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$


  • This structure was found via first-principles calculations. The data presented here was computed at a pressure of 400 GPa. The authors (Zeng, 2017) do not provide a value for $\beta$, so it is assumed to be near 90°. Using exactly 90° results in space group #58, so we set $\beta=91^{\circ}$, yielding space group #10.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{Cl I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{Cl I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{H I} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{H I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{H II} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{H II} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{H III} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(2m\right) & \mbox{H III} \\ \mathbf{B}_{9} & = & x_{5} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{Cl II} \\ \mathbf{B}_{10} & = & -x_{5} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{Cl II} \\ \mathbf{B}_{11} & = & x_{6} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{H IV} \\ \mathbf{B}_{12} & = & -x_{6} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{H IV} \\ \mathbf{B}_{13} & = & x_{7} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{H V} \\ \mathbf{B}_{14} & = & -x_{7} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{H V} \\ \mathbf{B}_{15} & = & x_{8} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{H VI} \\ \mathbf{B}_{16} & = & -x_{8} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(2n\right) & \mbox{H VI} \\ \end{array} \]

References

  • Q. Zeng, S. Yu, D. Li, A. R. Oganov, and G. Frapper, Emergence of novel hydrogen chlorides under high pressure, Phys. Chem. Chem. Phys. 19, 8236–8242 (2017), doi:10.1039/C6CP08708F.

Geometry files


Prototype Generator

aflow --proto=AB3_mP16_10_mn_3m3n --params=

Species:

Running:

Output: