CeTe3 Structure: AB3_oC16_40_b_3b

Picture of Structure; Click for Big Picture
Prototype : CeTe3
AFLOW prototype label : AB3_oC16_40_b_3b
Strukturbericht designation : None
Pearson symbol : oC16
Space group number : 40
Space group symbol : $Ama2$
AFLOW prototype command : aflow --proto=AB3_oC16_40_b_3b
--params=
$a$,$b/a$,$c/a$,$y_{1}$,$z_{1}$,$y_{2}$,$z_{2}$,$y_{3}$,$z_{3}$,$y_{4}$,$z_{4}$


Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & \frac12 \, b \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Ce} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Ce} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Te I} \\ \mathbf{B}_{4} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Te I} \\ \mathbf{B}_{5} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Te II} \\ \mathbf{B}_{6} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Te II} \\ \mathbf{B}_{7} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Te III} \\ \mathbf{B}_{8} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Te III} \\ \end{array} \]

References

  • C. Malliakas, S. J. L. Billinge, H. J. Kim, and M. G. Kanatzidis, Square Nets of Tellurium: Rare–Earth Dependent Variation in the Charge–Density Wave of RETe3 (RE = Rare–Earth Element), J. Am. Chem. Soc. 127, 6510–6511 (2005), doi:10.1021/ja0505292.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, ASM International (2013).

Geometry files


Prototype Generator

aflow --proto=AB3_oC16_40_b_3b --params=

Species:

Running:

Output: