$\alpha$–V3S Structure : AB3_tI32_121_g_f2i

Picture of Structure; Click for Big Picture
Prototype : SV3
AFLOW prototype label : AB3_tI32_121_g_f2i
Strukturbericht designation : None
Pearson symbol : tI32
Space group number : 121
Space group symbol : $I\bar{4}2m$
AFLOW prototype command : aflow --proto=AB3_tI32_121_g_f2i
--params=
$a$,$c/a$,$x_{1}$,$x_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$


Other compounds with this structure

  • Zr3Ir

  • $\alpha$–V3S is stable above 950 °C, but metastable at 25 °C, where this data was taken. Below 825 °C, the system transforms to the $\beta$–V3S structure.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} & \left(8f\right) & \mbox{V I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} & \left(8f\right) & \mbox{V I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{y}} & \left(8f\right) & \mbox{V I} \\ \mathbf{B}_{4} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{y}} & \left(8f\right) & \mbox{V I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{S} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{S} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{S} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{S} \\ \mathbf{B}_{9} & = & \left(x_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + 2x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V II} \\ \mathbf{B}_{10} & = & \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2}-2x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V II} \\ \mathbf{B}_{11} & = & \left(-x_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-z_{3}\right) \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V II} \\ \mathbf{B}_{12} & = & \left(x_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-z_{3}\right) \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V II} \\ \mathbf{B}_{13} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + 2x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V III} \\ \mathbf{B}_{14} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2}-2x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V III} \\ \mathbf{B}_{15} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V III} \\ \mathbf{B}_{16} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{V III} \\ \end{array} \]

References

  • B. Pedersen and F. Gr\onvold, The Crystal Structures of $\alpha$–V3S and $\beta$–V3S, Acta Cryst. 12, 1022–1027 (1959), doi:10.1107/S0365110X59002869.

Geometry files


Prototype Generator

aflow --proto=AB3_tI32_121_g_f2i --params=

Species:

Running:

Output: