Copper (I) Azide (CuN3) Structure : AB3_tI32_88_d_cf

Picture of Structure; Click for Big Picture
Prototype : CuN3
AFLOW prototype label : AB3_tI32_88_d_cf
Strukturbericht designation : None
Pearson symbol : tI32
Space group number : 88
Space group symbol : $I4_{1}/a$
AFLOW prototype command : aflow --proto=AB3_tI32_88_d_cf
--params=
$a$,$c/a$,$x_{3}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • AgN3 and TiN3

  • Not to be confused with Copper (II) Azide, Cu(N3)2, an explosive.
  • (Wilsdorf, 1948) gave the Wyckoff positions in setting 1 of space group #88. We used FINDSYM to translate this to the standard setting 2.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{N I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(8c\right) & \mbox{N I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{N I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8c\right) & \mbox{N I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Cu} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(8d\right) & \mbox{Cu} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Cu} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8d\right) & \mbox{Cu} \\ \mathbf{B}_{9} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3} - y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4}-y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3} + y_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{13} & = & \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} +y_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3} + y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{4} +y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3} - y_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16f\right) & \mbox{N II} \\ \end{array} \]

References

Found in

  • W. Zhu and H. Xiao, Ab initio study of electronic structure and optical properties of heavy–metal azides: TlN3, AgN3, and CuN3, J. Comput. Chem. 29, 176–184 (2008), doi:10.1002/jcc.20682.

Geometry files


Prototype Generator

aflow --proto=AB3_tI32_88_d_cf --params=

Species:

Running:

Output: