GaMo4S8 Structure : AB4C8_cF52_216_a_e_2e

Picture of Structure; Click for Big Picture
Prototype : GaMo4S8
AFLOW prototype label : AB4C8_cF52_216_a_e_2e
Strukturbericht designation : None
Pearson symbol : cF52
Space group number : 216
Space group symbol : $F\bar{4}3m$
AFLOW prototype command : aflow --proto=AB4C8_cF52_216_a_e_2e
--params=
$a$,$x_{2}$,$x_{3}$,$x_{4}$


Other compounds with this structure

  • Co(Mo2Re2)S8, Fe(Mo2Re2)S8, GaMo4S4Te4, GaMo4S8, GaMo4Se4Te4, GaMo4Se8, GaNb4S8, GaNb4Se8, GaTa4S8, GaTa4Se8, GaV4S8, GaV4Se8, LaMo4S8, Ni(Mo2Re2)S8, and Zn(Mo2Re2)S8

  • (Ben Yaich, 1984) do not give the lattice constant for GaMo4S8. We infer it from their interatomic distances.

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \mbox{Ga} \\ \mathbf{B}_{2} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Mo} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2}-3x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Mo} \\ \mathbf{B}_{4} & = & x_{2} \, \mathbf{a}_{1}-3x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Mo} \\ \mathbf{B}_{5} & = & -3x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{Mo} \\ \mathbf{B}_{6} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S I} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-3x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S I} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{1}-3x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S I} \\ \mathbf{B}_{9} & = & -3x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S I} \\ \mathbf{B}_{10} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S II} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2}-3x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S II} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{1}-3x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S II} \\ \mathbf{B}_{13} & = & -3x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(16e\right) & \mbox{S II} \\ \end{array} \]

References

  • H. Ben Yaich, J. C. Jegaden, M. Potel, R. Chevrel, M. Sergent, A. Berton, J. Chaussy, A. K. Rastogi, and R. Tournier, Nouveaux chalcogenures mixtes GaMo4($XX$')8 ($X$ = S, Se, Te) \`a clusters tetraedriques Mo4, J. Solid State Chem. 51, 212–217 (1984), doi:10.1016/0022-4596(84)90336-0.

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=AB4C8_cF52_216_a_e_2e --params=

Species:

Running:

Output: