Titanite (CaTiSiO5, $S0_{6}$) Structure : AB5CD_mC32_15_e_e2f_e_b

Picture of Structure; Click for Big Picture
Prototype : CaO5SiTi
AFLOW prototype label : AB5CD_mC32_15_e_e2f_e_b
Strukturbericht designation : $S0_{6}$
Pearson symbol : mC32
Space group number : 15
Space group symbol : $C2/c$
AFLOW prototype command : aflow --proto=AB5CD_mC32_15_e_e2f_e_b
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{2}$,$y_{3}$,$y_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


  • We use the data from sample M28658 to construct our titanite cell.
  • (Hermann, 1937) places the titanium atoms at the (4c) Wyckoff position rather than the (4b) position favored by (Hawthorne, 1991). The biggest difference between the two structures is the distance between the silicon and titantium atoms, which is 3.81 Å in Hawthorne and a rather short 2 Å in Hermann. We therefore favor the Hawthorne structure, and, since it does not otherwise substantially change the results, we continue to use $S0_{6}$ to describe it.
  • (Hermann, 1937) also listed this as the $H5_{6}$ structure in the index.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(4b\right) & \mbox{Ti} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(a+c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4b\right) & \mbox{Ti} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ca} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Ca} \\ \mathbf{B}_{5} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Si} \\ \mathbf{B}_{8} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Si} \\ \mathbf{B}_{9} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{5}a - z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & \left(x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{5}a + z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O II} \\ \mathbf{B}_{13} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{6}a - z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \mathbf{B}_{16} & = & \left(x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{6}a + z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{O III} \\ \end{array} \]

References

  • F. C. Hawthorne, L. A. Groat, M. Raudsepp, N. A. Ball, M. Kimata, F. D. Spike, R. Gaba, N. M. Halden, G. R. Lumpkin, R. C. Ewing, R. B. Greegor, F. W. Lytle, T. Scott Ercit, G. R. Rossman, F. J. Wicks, R. A. Ramik, B. L. Sherriff, M. E. Fleet, and C. McCammon, Alpha–decay damage in titanite, Am. Mineral. 76, 370–396 (1991).
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=AB5CD_mC32_15_e_e2f_e_b --params=

Species:

Running:

Output: