Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB5_hP6_191_a_cg

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

CaCu5 ($D2_{d}$) Structure: AB5_hP6_191_a_cg

Picture of Structure; Click for Big Picture
Prototype : CaCu5
AFLOW prototype label : AB5_hP6_191_a_cg
Strukturbericht designation : $D2_{d}$
Pearson symbol : hP6
Space group number : 191
Space group symbol : $\text{P6/mmm}$
AFLOW prototype command : aflow --proto=AB5_hP6_191_a_cg
--params=
$a$,$c/a$


Other compounds with this structure

  • Au5Sr, Ag3Al2La, Ag5Ba, CePt5, Co5Sm, Co5Tb, Co5Y, EuZn5, GdRh5, Ir5Nd, LaNi5, SmZn5, BaAg5, BaAu5, BaPt5, CaNi5, CaPt5, CaZn5, CeCo5, CeCu5, CeFe5, CeNi5, CePt5, CeZn5, DyCo5, DyFe5, DyNi5, ErCo5, ErNi5, GdCo5, GdCu5, GdFe5, GdNi5, HfBe5, HoCo5, HoCu5, HoNi5, KAu5, LaCo5, LaCu5, LaNi5, LaPt5, LaZn5, NdCo5, NdCu5, NdNi5, NdPt5, PrCo5, PrCu5, PrNi5, PrPt5, PrSr5, PuNi5, RbAu5, ScBe5, SmCo5, SmCu5, SmFe5, SmNi5, SrAg5, SrAu5, SrPd5, TbCo5, TbCu5, TbNi5, ThCo5, ThFe5, ThNi5, YCo5, YCu5, YFe5, and YNi5

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt{3}}{2} \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2} \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}}\\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1}& = &0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = &0 \mathbf{\hat{x}} + 0 \mathbf{\hat{y}} + 0 \mathbf{\hat{z}} & \left(1a\right) & \text{Ca} \\ \mathbf{B}_{2} & =&\frac13 \mathbf{a}_{1}+ \frac23 \mathbf{a}_{2}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac1{2\sqrt{3}} \, a \, \mathbf{\hat{y}}& \left(2c\right) & \text{Cu I} \\ \mathbf{B}_{3} & =&\frac23 \mathbf{a}_{1}+ \frac13 \mathbf{a}_{2}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac1{2\sqrt{3}} \, a \, \mathbf{\hat{y}}& \left(2c\right) & \text{Cu I} \\ \mathbf{B}_{4}& = &\frac12 \, \mathbf{a}_{1}+ \frac12 \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}- \frac{\sqrt3}{4} \, a \, \mathbf{\hat{y}}+ \frac12 \, c \, \mathbf{\hat{z}}& \left(3g\right) & \text{Cu II} \\ \mathbf{B}_{5}& = &\frac12 \, \mathbf{a}_{2}+ \frac12 \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac{\sqrt3}{4} \, a \, \mathbf{\hat{y}}+ \frac12 \, c \, \mathbf{\hat{z}}& \left(3g\right) & \text{Cu II} \\ \mathbf{B}_{6}& = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ \frac12 \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac12 \, c \, \mathbf{\hat{z}}& \left(3g\right) & \text{Cu II} \\ \end{array} \]

References

Found in

  • W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley– Interscience, New York, London, Sydney, Toronto, 1972)., pp. 645.

Geometry files


Prototype Generator

aflow --proto=AB5_hP6_191_a_cg --params=

Species:

Running:

Output: