Sr2NiTeO6 Structure : AB6C2D_mC40_12_ad_gh4i_j_bc

Picture of Structure; Click for Big Picture
Prototype : NiO6Sr2Te
AFLOW prototype label : AB6C2D_mC40_12_ad_gh4i_j_bc
Strukturbericht designation : None
Pearson symbol : mC40
Space group number : 12
Space group symbol : $C2/m$
AFLOW prototype command : aflow --proto=AB6C2D_mC40_12_ad_gh4i_j_bc
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{5}$,$y_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$,$x_{9}$,$z_{9}$,$x_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$


Other compounds with this structure

  • Sr2NiTeO6 and Cs2RbDy6


Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ni I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(2b\right) & \mbox{Te I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Te II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(a+c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Ni II} \\ \mathbf{B}_{5} & = & -y_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} & = & y_{5}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & y_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} & = & -y_{5}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -y_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & y_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O III} \\ \mathbf{B}_{10} & = & -x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O III} \\ \mathbf{B}_{11} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O IV} \\ \mathbf{B}_{12} & = & -x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O IV} \\ \mathbf{B}_{13} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O V} \\ \mathbf{B}_{14} & = & -x_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O V} \\ \mathbf{B}_{15} & = & x_{10} \, \mathbf{a}_{1} + x_{10} \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O VI} \\ \mathbf{B}_{16} & = & -x_{10} \, \mathbf{a}_{1}-x_{10} \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{O VI} \\ \mathbf{B}_{17} & = & \left(x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}+y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Sr} \\ \mathbf{B}_{18} & = & \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Sr} \\ \mathbf{B}_{19} & = & \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Sr} \\ \mathbf{B}_{20} & = & \left(x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}-y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Sr} \\ \end{array} \]

References

  • D. Iwanaga, Y. Inaguma, and M. Itoh, Structure and Magnetic Properties of Sr2Ni$A$O6 ($A$ = W, Te), Mater. Res. Bull. 35, 449–457 (2000), doi:10.1016/S0025-5408(00)00222-1.

Geometry files


Prototype Generator

aflow --proto=AB6C2D_mC40_12_ad_gh4i_j_bc --params=

Species:

Running:

Output: