Sr2MnTeO6 Structure : AB6C2D_mP20_14_a_3e_e_d

Picture of Structure; Click for Big Picture
Prototype : MnO6Sr2Te
AFLOW prototype label : AB6C2D_mP20_14_a_3e_e_d
Strukturbericht designation : None
Pearson symbol : mP20
Space group number : 14
Space group symbol : $P2_{1}/c$
AFLOW prototype command : aflow --proto=AB6C2D_mP20_14_a_3e_e_d
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


Other compounds with this structure

  • Cs2RbDyF6

  • This is the ground state structure of the double perovskite Sr${_2}$MnTeO6. Above 250 °C, it transforms into the Sr2NiTeO6 structure. Above 550 °C it transforms into the Sr2NiWO6 structure, and above 675 °C it transforms into the cubic perovskite $E2_{1}$ structure. (Ortega–San Martin, 2004).
  • (Ortega–San Martin, 2004) give the structure in the $P21/n$ setting of space group #14. We used FINDSYM to transform this to the standard $P2_{1}/c$ setting, which uses a different set of basis vectors.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Mn} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Mn} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(a+c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Te} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} & \left(2d\right) & \mbox{Te} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{4}a - z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{12} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{4}a + z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O II} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{5}a - z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{16} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{5}a + z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O III} \\ \mathbf{B}_{17} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr} \\ \mathbf{B}_{18} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{6}a - z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr} \\ \mathbf{B}_{19} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr} \\ \mathbf{B}_{20} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{6}a + z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Sr} \\ \end{array} \]

References

  • L. Ortega–San Martin, J. P. Chapman, E. Hernández–Bocanegra, M. Insausti, M. I. Arriortua, and T. Rojo, Structural phase transitions in the ordered double perovskite Sr$2$MnTeO6, J. Phys.: Condens. Matter 16, 3879–3888 (2004), doi:10.1088/0953-8984/16/23/008.

Geometry files


Prototype Generator

aflow --proto=AB6C2D_mP20_14_a_3e_e_d --params=

Species:

Running:

Output: