CaO2(H2O)8 Structure : AB8C2_tP22_124_a_n_h

Picture of Structure; Click for Big Picture
Prototype : Ca(H2O)8O2
AFLOW prototype label : AB8C2_tP22_124_a_n_h
Strukturbericht designation : None
Pearson symbol : tP22
Space group number : 124
Space group symbol : $P4/mcc$
AFLOW prototype command : aflow --proto=AB8C2_tP22_124_a_n_h
--params=
$a$,$c/a$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • BrO2(H2O)8 and SaO2(H2O)8

  • This structure was proposed by (Shineman, 1951) to replace the $E6_{2}$ SrO2(H2O)8 structure. The unit cell is doubled in the (001) direction, and the oxygens are now molecular.
  • The positions of the hydrogen atom in the water molecule were not determined, so we only provide the oxygen position (labeled as H2O).

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ca} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Ca} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{O} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{O} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{O} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{O} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{9} & = & -y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{10} & = & y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{13} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{14} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{15} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{16} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{17} & = & y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{18} & = & -y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{19} & = & x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{20} & = & -x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{21} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{22} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16n\right) & \mbox{H$_{2}$O} \\ \end{array} \]

References

Geometry files


Prototype Generator

aflow --proto=AB8C2_tP22_124_a_n_h --params=

Species:

Running:

Output: