KBO2 ($F5_{13}$) Structure: ABC2_hR24_167_e_e_2e

Picture of Structure; Click for Big Picture
Prototype : KBO2
AFLOW prototype label : ABC2_hR24_167_e_e_2e
Strukturbericht designation : $F5_{13}$
Pearson symbol : hR24
Space group number : 167
Space group symbol : $R\bar{3}c$
AFLOW prototype command : aflow --proto=ABC2_hR24_167_e_e_2e [--hex]
--params=
$a$,$c/a$,$x_{1}$,$x_{2}$,$x_{3}$,$x_{4}$


Other compounds with this structure

  • NaBO2, NaBS2

Rhombohedral primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac{1}{\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & - \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{2}x_{1}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{B} \\ \mathbf{B}_{2} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{1}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{1}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{B} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{1}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{B} \\ \mathbf{B}_{4} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -a\left(\frac{1}{2}x_{1}+\frac{3}{8}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{1}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{B} \\ \mathbf{B}_{5} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8} - \frac{1}{2}x_{1}\right)a \, \mathbf{\hat{x}}-a\left(\frac{\sqrt{3}}{2}x_{1}+\frac{5}{8\sqrt{3}}\right) \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{B} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{B} \\ \mathbf{B}_{7} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{K} \\ \mathbf{B}_{8} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{K} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{K} \\ \mathbf{B}_{10} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -a\left(\frac{1}{2}x_{2}+\frac{3}{8}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{K} \\ \mathbf{B}_{11} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8} - \frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}}-a\left(\frac{\sqrt{3}}{2}x_{2}+\frac{5}{8\sqrt{3}}\right) \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{K} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{K} \\ \mathbf{B}_{13} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{2}x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{3}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -a\left(\frac{1}{2}x_{3}+\frac{3}{8}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{3}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8} - \frac{1}{2}x_{3}\right)a \, \mathbf{\hat{x}}-a\left(\frac{\sqrt{3}}{2}x_{3}+\frac{5}{8\sqrt{3}}\right) \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{2}x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{4}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O II} \\ \mathbf{B}_{21} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -a\left(\frac{1}{2}x_{4}+\frac{3}{8}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{4}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8} - \frac{1}{2}x_{4}\right)a \, \mathbf{\hat{x}}-a\left(\frac{\sqrt{3}}{2}x_{4}+\frac{5}{8\sqrt{3}}\right) \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{O II} \\ \end{array} \]

References

  • W. Schneider and G. B. Carpenter, Bond lengths and thermal parameters of potassium metaborate, K3B3O6, Acta Crystallogr. Sect. B Struct. Sci. 26, 1189–1191 (1970), doi:10.1107/S0567740870003849.

Found in

  • P. Villars, K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko–Koblyuk, O. Pavlyuk, I. Savysyuk, S. Stoyko, and L. Sysa, Landolt–Börnstein – Group III Condensed Matter (Numerical Data and Functional Relationships in Science and Technology) (Springer, Berlin, Heidelberg, 2007), vol. 43A5, chap. KBO2 in Structure Types. Part 5: Space Groups (173) P63 – (166) R–3m.

Geometry files


Prototype Generator

aflow --proto=ABC2_hR24_167_e_e_2e --params=

Species:

Running:

Output: