KFeS2 ($F5_{a}$) Structure : ABC2_mC16_15_e_e_f

Picture of Structure; Click for Big Picture
Prototype : FeKS2
AFLOW prototype label : ABC2_mC16_15_e_e_f
Strukturbericht designation : $F5_{a}$
Pearson symbol : mC16
Space group number : 15
Space group symbol : $C2/c$
AFLOW prototype command : aflow --proto=ABC2_mC16_15_e_e_f
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{1}$,$y_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • RbFeS2, KFeSe2, RbFeSe2, CsGaS2, and CsGaSe2

  • This structure forms cages of Fe atoms surrounded by tetrahedra of S atoms.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Fe} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{Fe} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{K} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{K} \\ \mathbf{B}_{5} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \mathbf{B}_{6} & = & \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \mathbf{B}_{8} & = & \left(x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{S} \\ \end{array} \]

References

  • W. Bronger, A. Kyas, and P. Müller, The antiferromagnetic structures of KFeS2, RbFeS2, KFeSe2, and RbFeSe2 and the correlation between magnetic moments and crystal field calculations, J. Solid State Chem. 70, 262–270 (1987), doi:10.1016/0022-4596(87)90065-X.

Geometry files


Prototype Generator

aflow --proto=ABC2_mC16_15_e_e_f --params=

Species:

Running:

Output: