CsFeS2 (100 K) Structure : ABC2_oI16_71_g_i_eh

Picture of Structure; Click for Big Picture
Prototype : CsFeS2
AFLOW prototype label : ABC2_oI16_71_g_i_eh
Strukturbericht designation : None
Pearson symbol : oI16
Space group number : 71
Space group symbol : $Immm$
AFLOW prototype command : aflow --proto=ABC2_oI16_71_g_i_eh
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$y_{2}$,$y_{3}$,$z_{4}$


Other compounds with this structure

  • RbFeS2

  • This structure is stable at 100 K and above. At 40 K the structure is triclinic, with as yet undetermined atomic positions. (Ito, 1985)

Body-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} & \left(4e\right) & \mbox{S I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} & \left(4e\right) & \mbox{S I} \\ \mathbf{B}_{3} & = & y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Cs} \\ \mathbf{B}_{4} & = & -y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Cs} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{S II} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{S II} \\ \mathbf{B}_{7} & = & z_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} & = & z_{4}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Fe} \\ \mathbf{B}_{8} & = & -z_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} & = & -z_{4}c \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Fe} \\ \end{array} \]

References

  • Y. Ito, M. Nishi, C. F. Majkrzak, and L. Passell, Low Temperature Powder Neutron Diffraction Studies of CsFeS2, J. Phys. Soc. Jpn. 54, 348–357 (1985), doi:10.1143/JPSJ.54.348.

Found in

Geometry files


Prototype Generator

aflow --proto=ABC2_oI16_71_g_i_eh --params=

Species:

Running:

Output: