Lueshite (NaNbO3) Structure : ABC3_oP40_57_cd_e_cd2e

Picture of Structure; Click for Big Picture
Prototype : NaNbO3
AFLOW prototype label : ABC3_oP40_57_cd_e_cd2e
Strukturbericht designation : None
Pearson symbol : oP40
Space group number : 57
Space group symbol : $Pbcm$
AFLOW prototype command : aflow --proto=ABC3_oP40_57_cd_e_cd2e
--params=
$a$,$b/a$,$c/a$,$x_{1}$,$x_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$,$x_{7}$,$y_{7}$,$z_{7}$


Other compounds with this structure

  • NaNb1–xTixO3

  • If the AFLOW parameters are set to ––params=$a,1,\sqrt{8},1/4,3/4,1/4,1/4,1/4,3/4,1/4,3/4,5/8,1/2,1/2,5/8,0,0,5/8$ then the structure is equivalent to Cubic Perovskite $E2_{1}$.

Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{Na I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Na I} \\ \mathbf{B}_{3} & = & -x_{1} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{Na I} \\ \mathbf{B}_{4} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Na I} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{8} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{O I} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Na II} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Na II} \\ \mathbf{B}_{11} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Na II} \\ \mathbf{B}_{12} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{Na II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{16} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \mbox{O II} \\ \mathbf{B}_{17} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{18} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{19} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{20} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{5}\right)b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{21} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{22} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{23} & = & x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{24} & = & -x_{5} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{5}\right)b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Nb} \\ \mathbf{B}_{25} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{26} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{27} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{28} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)b \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{29} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{30} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{31} & = & x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{32} & = & -x_{6} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{6}\right)b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O III} \\ \mathbf{B}_{33} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{34} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{35} & = & -x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{36} & = & x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)b \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{37} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}}-y_{7}b \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{38} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{39} & = & x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \mathbf{B}_{40} & = & -x_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & -x_{7}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{7}\right)b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{O IV} \\ \end{array} \]

References

  • A. C. Sakowski–Cowley, K. Lukaszewicz, and H. D. Megaw, The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures, Acta Crystallogr. Sect. B Struct. Sci. 25, 851–865 (1969), doi:10.1107/S0567740869003141.

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=ABC3_oP40_57_cd_e_cd2e --params=

Species:

Running:

Output: