O(OH)Y Structure : ABC_mP6_11_e_e_e

Picture of Structure; Click for Big Picture
Prototype : HO2Y
AFLOW prototype label : ABC_mP6_11_e_e_e
Strukturbericht designation : None
Pearson symbol : mP6
Space group number : 11
Space group symbol : $P2_{1}/m$
AFLOW prototype command : aflow --proto=ABC_mP6_11_e_e_e
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$


Other compounds with this structure

  • HoO(OH), ErO(OH), and YbO(OH)

  • For this prototype, the OH molecules are centered on the ($2e$) Wyckoff position.

Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{O} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{OH} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{OH} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Y} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(2e\right) & \mbox{Y} \\ \end{array} \]

References

  • R. F. Klevtsova and P. V. Klevtsov, The Crystal Structure of YOOH, J. Struct. Chem. 5 (1965), doi:10.1007/BF00744232.

Geometry files


Prototype Generator

aflow --proto=ABC_mP6_11_e_e_e --params=

Species:

Running:

Output: