Nevskite (BiSe) Structure : AB_hP12_164_c2d_c2d

Picture of Structure; Click for Big Picture
Prototype : BiSe
AFLOW prototype label : AB_hP12_164_c2d_c2d
Strukturbericht designation : None
Pearson symbol : hP12
Space group number : 164
Space group symbol : $P\bar{3}m1$
AFLOW prototype command : aflow --proto=AB_hP12_164_c2d_c2d
--params=
$a$,$c/a$,$z_{1}$,$z_{2}$,$z_{3}$,$z_{4}$,$z_{5}$,$z_{6}$


Other compounds with this structure

  • BiTe (Tsumoite) and Bi(S0.56Te0.44), (Ingodite)

Trigonal Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Bi I} \\ \mathbf{B}_{2} & = & -z_{1} \, \mathbf{a}_{3} & = & -z_{1}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Bi I} \\ \mathbf{B}_{3} & = & z_{2} \, \mathbf{a}_{3} & = & z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Se I} \\ \mathbf{B}_{4} & = & -z_{2} \, \mathbf{a}_{3} & = & -z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Se I} \\ \mathbf{B}_{5} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Bi II} \\ \mathbf{B}_{6} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Bi II} \\ \mathbf{B}_{7} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Bi III} \\ \mathbf{B}_{8} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Bi III} \\ \mathbf{B}_{9} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Se II} \\ \mathbf{B}_{10} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Se II} \\ \mathbf{B}_{11} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Se III} \\ \mathbf{B}_{12} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Se III} \\ \end{array} \]

References

  • E. Gaudin, S. Jobic, M. Evain, R. Brec, and J. Rouxel, Charge balance in some BixSey phases through atomic structure determination and band structure calculations, Mater. Res. Bull. 30, 549–561 (1995), doi:10.1016/0025-5408(95)00030-5.

Geometry files


Prototype Generator

aflow --proto=AB_hP12_164_c2d_c2d --params=

Species:

Running:

Output: