SiAs Structure : AB_mC24_12_3i_3i

Picture of Structure; Click for Big Picture
Prototype : AsSi
AFLOW prototype label : AB_mC24_12_3i_3i
Strukturbericht designation : None
Pearson symbol : mC24
Space group number : 12
Space group symbol : $C2/m$
AFLOW prototype command : aflow --proto=AB_mC24_12_3i_3i
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$


Other compounds with this structure

  • GaTe and GeAs

  • The structures of GaTe and GeAs were apparently determined by (Bryden, 1965) before (Wadsten, 1965) found the structure of SiAs, but they were never published (Pearson, 1964; Wadsten, 1965; Mead, 1982). As SiAs was the first published determination of this structure, we use it as the prototype.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \left(x_{1}a+z_{1}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{As I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & \left(-x_{1}a-z_{1}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{1}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{As I} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{As II} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{As II} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{As III} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{As III} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Si I} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Si I} \\ \mathbf{B}_{9} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Si II} \\ \mathbf{B}_{10} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Si II} \\ \mathbf{B}_{11} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Si III} \\ \mathbf{B}_{12} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Si III} \\ \end{array} \]

References

  • W. B. Pearson, The crystal structures of semiconductors and a general valence rule, Acta Cryst. 17, 1–15 (1964), doi:10.1107/S0365110X64000019.
  • J. H. Bryden, Private Communication (1965). To T. Wadsten.

Geometry files


Prototype Generator

aflow --proto=AB_mC24_12_3i_3i --params=

Species:

Running:

Output: