FCC C60 Buckminsterfullerene Structure: A_cF240_202_h2i

Picture of Structure; Click for Big Picture
Prototype : C
AFLOW prototype label : A_cF240_202_h2i
Strukturbericht designation : None
Pearson symbol : cF240
Space group number : 202
Space group symbol : $Fm\bar{3}$
AFLOW prototype command : aflow --proto=A_cF240_202_h2i
--params=
$a$,$y_{1}$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


  • This is an {\em approximate} representation of the structure of C60 buckminsterfullerene. As noted by the authors, a careful analysis of the intensity data reveals that the molecules must pack in an uncorrelated array, in full agreement with the results from most previous diffraction and spectroscopic determinations. The C60 molecules are on the sites of an fcc lattice. Below 249 K there is a transition to a simple cubic phase of C60.

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \left(y_{1}+z_{1}\right) \, \mathbf{a}_{1} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{3} & = & y_{1}a \, \mathbf{\hat{y}} + z_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{2} & = & \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{1} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}a \, \mathbf{\hat{y}} + z_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{3} & = & \left(y_{1}-z_{1}\right) \, \mathbf{a}_{1} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & y_{1}a \, \mathbf{\hat{y}}-z_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{4} & = & \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{1} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}a \, \mathbf{\hat{y}}-z_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{5} & = & \left(y_{1}-z_{1}\right) \, \mathbf{a}_{1} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & z_{1}a \, \mathbf{\hat{x}} + y_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{6} & = & \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{1} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & z_{1}a \, \mathbf{\hat{x}}-y_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{7} & = & \left(y_{1}+z_{1}\right) \, \mathbf{a}_{1} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{3} & = & -z_{1}a \, \mathbf{\hat{x}} + y_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{8} & = & \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{1} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{3} & = & -z_{1}a \, \mathbf{\hat{x}}-y_{1}a \, \mathbf{\hat{z}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{9} & = & \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{1} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & y_{1}a \, \mathbf{\hat{x}} + z_{1}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{10} & = & \left(y_{1}+z_{1}\right) \, \mathbf{a}_{1} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}a \, \mathbf{\hat{x}} + z_{1}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{11} & = & \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{1} + \left(y_{1}+z_{1}\right) \, \mathbf{a}_{2} + \left(y_{1}-z_{1}\right) \, \mathbf{a}_{3} & = & y_{1}a \, \mathbf{\hat{x}}-z_{1}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{12} & = & \left(y_{1}-z_{1}\right) \, \mathbf{a}_{1} + \left(-y_{1}+z_{1}\right) \, \mathbf{a}_{2} + \left(-y_{1}-z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}a \, \mathbf{\hat{x}}-z_{1}a \, \mathbf{\hat{y}} & \left(48h\right) & \mbox{C I} \\ \mathbf{B}_{13} & = & \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} + z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{14} & = & \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} + z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{15} & = & \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}}-z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{16} & = & \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}}-z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{17} & = & \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & z_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{18} & = & \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & z_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{19} & = & \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -z_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{20} & = & \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -z_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{21} & = & \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}} + z_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{22} & = & \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}} + z_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{23} & = & \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}}-z_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{24} & = & \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}}-z_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{25} & = & \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}}-z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{26} & = & \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}}-z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{27} & = & \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} + z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{28} & = & \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} + z_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{29} & = & \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -z_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{30} & = & \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -z_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{31} & = & \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & z_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{32} & = & \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & z_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + y_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{33} & = & \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}}-z_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{34} & = & \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}}-z_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{35} & = & \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}} + z_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{36} & = & \left(-x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}} + z_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C II} \\ \mathbf{B}_{37} & = & \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{38} & = & \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{39} & = & \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{40} & = & \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{41} & = & \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{42} & = & \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{43} & = & \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{44} & = & \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{45} & = & \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{46} & = & \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{47} & = & \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{48} & = & \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{49} & = & \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{50} & = & \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{51} & = & \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{52} & = & \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{53} & = & \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{54} & = & \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{55} & = & \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{56} & = & \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{57} & = & \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{58} & = & \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{59} & = & \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \mathbf{B}_{60} & = & \left(-x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(96i\right) & \mbox{C III} \\ \end{array} \]

References

  • D. L. Dorset and M. P. McCourt, Disorder and the molecular packing of C60 buckminsterfullerene: a direct electron–crystallographic analysis, Acta Crystallogr. Sect. A 50, 344–351 (1994), doi:10.1107/S0108767393012607.

Geometry files


Prototype Generator

aflow --proto=A_cF240_202_h2i --params=

Species:

Running:

Output: