H–III (300 GPa) Structure: A_mC24_15_2e2f

Picture of Structure; Click for Big Picture
Prototype : H
AFLOW prototype label : A_mC24_15_2e2f
Strukturbericht designation : None
Pearson symbol : mC24
Space group number : 15
Space group symbol : $C2/c$
AFLOW prototype command : aflow --proto=A_mC24_15_2e2f
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{1}$,$y_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


  • This structure was determined by density functional simulations. The authors claim it is in good agreement with experimental data for H–III, and is the lowest energy structure at pressures from approximately 100–250 GPa, including zero-point motion. The data presented here was computed at 300 GPa. If we change our description of the unit cell so that \[ \mathbf{a}_{3} \rightarrow \mathbf{a}_{1} + \mathbf{a}_{2} + \mathbf{a}_{3}\] then all of the primitive vectors for the base-centered orthorhombic structure have approximately equal lengths, and the angles between them are approximately $60^{\circ}$. This structure is very close to exhibiting a face-centered cubic lattice.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H I} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H I} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c\cos\beta \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H II} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c\cos\beta \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{H II} \\ \mathbf{B}_{5} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H III} \\ \mathbf{B}_{6} & = & \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{3}a - z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H III} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H III} \\ \mathbf{B}_{8} & = & \left(x_{3}+y_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{3}a + z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H III} \\ \mathbf{B}_{9} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H IV} \\ \mathbf{B}_{10} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta - x_{4}a - z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H IV} \\ \mathbf{B}_{11} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H IV} \\ \mathbf{B}_{12} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}c\cos\beta +x_{4}a + z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c\sin\beta \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{H IV} \\ \end{array} \]

References

  • C. J. Pickard and R. J. Needs, Structure of phase III of solid hydrogen, Nat. Phys. 3, 473–476 (2007), doi:10.1038/nphys625.

Geometry files


Prototype Generator

aflow --proto=A_mC24_15_2e2f --params=

Species:

Running:

Output: