$\alpha$–Pu Structure: A_mP16_11_8e

Picture of Structure; Click for Big Picture
Prototype : $\alpha$–Pu
AFLOW prototype label : A_mP16_11_8e
Strukturbericht designation : None
Pearson symbol : mP16
Space group number : 11
Space group symbol : $\mbox{P2}_{1}\mbox{/m}$
AFLOW prototype command : aflow --proto=A_mP16_11_8e
--params=
$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$


Simple Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =& x_{1} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3}& =& \left(x_{1} \, a + z_{1} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{1} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu I} \\ \mathbf{B}_{2} & =& - x_{1} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{1} \, \mathbf{a}_{3}& =& - \left(x_{1} \, a + z_{1} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{1} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu I} \\ \mathbf{B}_{3} & =& x_{2} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3}& =& \left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu II} \\ \mathbf{B}_{4} & =& - x_{2} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{2} \, \mathbf{a}_{3}& =& - \left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu II} \\ \mathbf{B}_{5} & =& x_{3} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3}& =& \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu III} \\ \mathbf{B}_{6} & =& - x_{3} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{3} \, \mathbf{a}_{3}& =& - \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu III} \\ \mathbf{B}_{7} & =& x_{4} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3}& =& \left(x_{4} \, a + z_{4} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{4} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu IV} \\ \mathbf{B}_{8} & =& - x_{4} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{4} \, \mathbf{a}_{3}& =& - \left(x_{4} \, a + z_{4} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{4} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu IV} \\ \mathbf{B}_{9} & =& x_{5} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3}& =& \left(x_{5} \, a + z_{5} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{5} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu V} \\ \mathbf{B}_{10} & =& - x_{5} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{5} \, \mathbf{a}_{3}& =& - \left(x_{5} \, a + z_{5} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{5} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu V} \\ \mathbf{B}_{11} & =& x_{6} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3}& =& \left(x_{6} \, a + z_{6} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{6} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu VI} \\ \mathbf{B}_{12} & =& - x_{6} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{6} \, \mathbf{a}_{3}& =& - \left(x_{6} \, a + z_{6} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{6} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu VI} \\ \mathbf{B}_{13} & =& x_{7} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3}& =& \left(x_{7} \, a + z_{7} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{7} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu VII} \\ \mathbf{B}_{14} & =& - x_{7} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{7} \, \mathbf{a}_{3}& =& - \left(x_{7} \, a + z_{7} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{7} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu VII} \\ \mathbf{B}_{15} & =& x_{8} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3}& =& \left(x_{8} \, a + z_{8} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{8} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu VIII} \\ \mathbf{B}_{16} & =& - x_{8} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{8} \, \mathbf{a}_{3}& =& - \left(x_{8} \, a + z_{8} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{8} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \mbox{Pu VIII} \\ \end{array} \]

References

  • W. H. Zachariasen and F. H. Ellinger, The Crystal Structure of Alpha Plutonium Metal, Acta Cryst. 16, 777–783 (1963), doi:10.1107/S0365110X63002012.

Found in

  • J. Donohue, The Structure of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982)., pp. 159-162.

Geometry files


Prototype Generator

aflow --proto=A_mP16_11_8e --params=

Species:

Running:

Output: