Cl ($A18$) Structure: A_tP16_138_j

Picture of Structure; Click for Big Picture
Prototype : Cl
AFLOW prototype label : A_tP16_138_j
Strukturbericht designation : $A18$
Pearson symbol : tP16
Space group number : 138
Space group symbol : $\mbox{P4}_{2}\mbox{/ncm}$
AFLOW prototype command : aflow --proto=A_tP16_138_j
--params=
$a$,$c/a$,$x_{1}$,$y_{1}$,$z_{1}$


  • As given, this structure has a Cl–Cl bond distance of 1.82Å, far too small for chlorine. The structure was eventually reanalyzed, and found to be similar to molecular iodine (A14). See (Donohue, 1982, 396) for details. We retain this structure for its historical interest. Note that all atoms are on the general sites of space group P42/ncm.

Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = &x_{1} \, \mathbf{a}_{1}+ y_{1} \, \mathbf{a}_{2}+ z_{1} \, \mathbf{a}_{3}& = &x_{1} \, a \, \mathbf{\hat{x}}+ y_{1} \, a \, \mathbf{\hat{y}}+ z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{2} & = &\left(\frac12 - x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 - y_{1}\right) \, \mathbf{a}_{2}+ z_{1} \, \mathbf{a}_{3}& = &\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - y_{1}\right) \, a \, \mathbf{\hat{y}}+ z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{3} & = &\left(\frac12 - y_{1}\right) \, \mathbf{a}_{1}+ x_{1} \, \mathbf{a}_{2}+ \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - y_{1}\right) \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{4} & = &y_{1} \, \mathbf{a}_{1}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& = &y_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{5} & = &- x_{1} \, \mathbf{a}_{1}+ \left(\frac12 + y_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{1}\right) \, \mathbf{a}_{3}& = &- x_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + y_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{6} & = &\left(\frac12 + x_{1}\right) \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+ \left(\frac12 - z_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{x}}- y_{1} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{7} & = &\left(\frac12 + y_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}& = &\left(\frac12 + y_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{y}}- z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{8} & = &- y_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}& = &- y_{1} \, a \, \mathbf{\hat{x}}- x_{1} \, a \, \mathbf{\hat{y}}- z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{9} & = &- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}& = &- x_{1} \, a \, \mathbf{\hat{x}}- y_{1} \, a \, \mathbf{\hat{y}}- z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{10} & = &\left(\frac12 + x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 + y_{1}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}& = &\left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + y_{1}\right) \, a \, \mathbf{\hat{y}}- z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{11} & = &\left(\frac12 + y_{1}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+ \left(\frac12 - z_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + y_{1}\right) \, a \, \mathbf{\hat{x}}- x_{1} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{12} & = &- y_{1} \, \mathbf{a}_{1}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 - z_{1}\right) \, \mathbf{a}_{3}& = &- y_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{13} & = &x_{1} \, \mathbf{a}_{1}+ \left(\frac12 - y_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& = &x_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - y_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{14} & = &\left(\frac12 - x_{1}\right) \, \mathbf{a}_{1}+ y_{1} \, \mathbf{a}_{2}+ \left(\frac12 + z_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ y_{1} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{1}\right) \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{15} & = &\left(\frac12 - y_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{2}+ z_{1} \, \mathbf{a}_{3}& = &\left(\frac12 - y_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \mathbf{B}_{16} & = &y_{1} \, \mathbf{a}_{1}+ x_{1} \, \mathbf{a}_{2}+ z_{1} \, \mathbf{a}_{3}& = &y_{1} \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}+ z_{1} \, c \, \mathbf{\hat{z}}& \left(16j\right) & \mbox{Cl} \\ \end{array} \]

References

Found in

  • J. Donohue, The Structure of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982)., pp. 396.

Geometry files


Prototype Generator

aflow --proto=A_tP16_138_j --params=

Species:

Running:

Output: