$\gamma$–N Structure: A_tP4_136_f

Picture of Structure; Click for Big Picture
Prototype : $\gamma$–N
AFLOW prototype label : A_tP4_136_f
Strukturbericht designation : None
Pearson symbol : tP4
Space group number : 136
Space group symbol : $\mbox{P4}_{2}\mbox{/mnm}$
AFLOW prototype command : aflow --proto=A_tP4_136_f
--params=
$a$,$c/a$,$x_{1}$


Simple Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}}\\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & =&x_{1} \, \mathbf{a}_{1}+ x_{1} \, \mathbf{a}_{2}& =&x_{1} \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}& \left(4f\right) & \mbox{N} \\ \mathbf{B}_{2} & =&- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}& =&- x_{1} \, a \, \mathbf{\hat{x}}- x_{1} \, a \, \mathbf{\hat{y}}& \left(4f\right) & \mbox{N} \\ \mathbf{B}_{3} & =&\left(\frac12 - x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& =&\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \frac12 \, c \, \mathbf{\hat{z}}& \left(4f\right) & \mbox{N} \\ \mathbf{B}_{4} & =&\left(\frac12 + x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& =&\left(\frac12 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ \frac12 \, c \, \mathbf{\hat{z}}& \left(4f\right) & \mbox{N} \\ \end{array} \]

References

Found in

  • J. Donohue, The Structure of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982)., pp. 207-208.

Geometry files


Prototype Generator

aflow --proto=A_tP4_136_f --params=

Species:

Running:

Output: