Proposed 300 GPa HfH10 Structure : A10B_hP22_194_bhj_c

Picture of Structure; Click for Big Picture
Prototype : H10Hf
AFLOW prototype label : A10B_hP22_194_bhj_c
Strukturbericht designation : None
Pearson symbol : hP22
Space group number : 194
Space group symbol : $P6_{3}/mmc$
AFLOW prototype command : aflow --proto=A10B_hP22_194_bhj_c
--params=
$a$,$c/a$,$x_{3}$,$x_{4}$,$y_{4}$


Other compounds with this structure

  • LuH10, ScH10, and ZrH10

  • This structure has only been determined computationally. At 300 GPa it is predicted to have a superconducting transitions temperature $T_{\mathrm{c}}$ above 200 K.

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{H I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{H I} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Hf} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Hf} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + 2x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{H II} \\ \mathbf{B}_{6} & = & -2x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{H II} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{H II} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1}-2x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{H II} \\ \mathbf{B}_{9} & = & 2x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{H II} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \sqrt{3}x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{H II} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{12} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{13} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{14} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{15} & = & y_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{16} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{17} & = & y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{18} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{19} & = & -x_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{20} & = & -y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{21} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \mathbf{B}_{22} & = & x_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(12j\right) & \mbox{H III} \\ \end{array} \]

References

  • H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, Hydrogen pentagraphenelike structure stabilized by hafnium: a high–temperature conventional superconductor, Phys. Rev. Lett. 125, 217001 (2020), doi:10.1103/PhysRevLett.125.217001.

Geometry files


Prototype Generator

aflow --proto=A10B_hP22_194_bhj_c --params=

Species:

Running:

Output: