Blossite ($\alpha$–Cu2V2O7) Structure : A2B7C2_oF88_43_b_a3b_b

Picture of Structure; Click for Big Picture
Prototype : Cu2O7V2
AFLOW prototype label : A2B7C2_oF88_43_b_a3b_b
Strukturbericht designation : None
Pearson symbol : oF88
Space group number : 43
Space group symbol : $Fdd2$
AFLOW prototype command : aflow --proto=A2B7C2_oF88_43_b_a3b_b
--params=
$a$,$b/a$,$c/a$,$z_{1}$,$x_{2}$,$y_{2}$,$z_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$


  • This structure was given the name blossite by (Robinson, 1987).
  • Space group $Fdd2$ #43 does not fix the $z=0$ plane. We do this by setting $z_{2} = 3/4$ for the copper atom.

Face-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & z_{1}c \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{O I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{4} +z_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +z_{1}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - z_{1}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(8a\right) & \mbox{O I} \\ \mathbf{B}_{3} & = & \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(x_{2}+y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{Cu} \\ \mathbf{B}_{4} & = & \left(x_{2}-y_{2}+z_{2}\right) \, \mathbf{a}_{1} + \left(-x_{2}+y_{2}+z_{2}\right) \, \mathbf{a}_{2} + \left(-x_{2}-y_{2}-z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{Cu} \\ \mathbf{B}_{5} & = & \left(\frac{1}{4} - x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{Cu} \\ \mathbf{B}_{6} & = & \left(\frac{1}{4} +x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{2}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{Cu} \\ \mathbf{B}_{7} & = & \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O II} \\ \mathbf{B}_{8} & = & \left(x_{3}-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}-z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O II} \\ \mathbf{B}_{9} & = & \left(\frac{1}{4} - x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O II} \\ \mathbf{B}_{10} & = & \left(\frac{1}{4} +x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{3}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O II} \\ \mathbf{B}_{11} & = & \left(-x_{4}+y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O III} \\ \mathbf{B}_{12} & = & \left(x_{4}-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O III} \\ \mathbf{B}_{13} & = & \left(\frac{1}{4} - x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +x_{4} - y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O III} \\ \mathbf{B}_{14} & = & \left(\frac{1}{4} +x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O III} \\ \mathbf{B}_{15} & = & \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O IV} \\ \mathbf{B}_{16} & = & \left(x_{5}-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}-z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O IV} \\ \mathbf{B}_{17} & = & \left(\frac{1}{4} - x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O IV} \\ \mathbf{B}_{18} & = & \left(\frac{1}{4} +x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{5}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{O IV} \\ \mathbf{B}_{19} & = & \left(-x_{6}+y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-y_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}-z_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{V} \\ \mathbf{B}_{20} & = & \left(x_{6}-y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}-z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{V} \\ \mathbf{B}_{21} & = & \left(\frac{1}{4} - x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{V} \\ \mathbf{B}_{22} & = & \left(\frac{1}{4} +x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{6}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{6}\right)b \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(16b\right) & \mbox{V} \\ \end{array} \]

References

  • C. Calvo and R. Faggiani, $\alpha$ Cupric Divanadate, Acta Crystallogr. Sect. B Struct. Sci. 31, 603–605 (1975), doi:10.1107/S0567740875003354.
  • P. D. Robinson, J. M. Hughes, and M. L. Malinconico, Blossite, $\alpha$–Cu22+V25+O7, an new fumarolic sublimate from Izalco volcano, El Salvador, Am. Mineral. 72, 397–400 (1987).

Found in

  • R. T. Downs and M. Hall–Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Geometry files


Prototype Generator

aflow --proto=A2B7C2_oF88_43_b_a3b_b --params=

Species:

Running:

Output: