Eriochalcite (CuCl2·2H2O, $C45$) Structure : A2BC4D2_oP18_53_h_a_i_e

Picture of Structure; Click for Big Picture
Prototype : Cl2CuH4O2
AFLOW prototype label : A2BC4D2_oP18_53_h_a_i_e
Strukturbericht designation : $C45$
Pearson symbol : oP18
Space group number : 53
Space group symbol : $Pmna$
AFLOW prototype command : aflow --proto=A2BC4D2_oP18_53_h_a_i_e
--params=
$a$,$b/a$,$c/a$,$x_{2}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$


Simple Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & a \, \mathbf{\hat{x}} \\ \mathbf{a}_2 & = & b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cu} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Cu} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} & = & x_{2}a \, \mathbf{\hat{x}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{5} & = & -x_{2} \, \mathbf{a}_{1} & = & -x_{2}a \, \mathbf{\hat{x}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4e\right) & \mbox{O} \\ \mathbf{B}_{7} & = & y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{10} & = & -y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Cl} \\ \mathbf{B}_{11} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{14} & = & x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{15} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \mathbf{B}_{18} & = & -x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \mbox{H} \\ \end{array} \]

References

  • S. Brownstein, N. F. Han, E. Gabe, and Y. LePage, A redetermination of the crystal structure of cupric chloride dihydrate, Zeitschrift für Kristallographie – Crystalline Materials 189, 13–15 (1989), doi:10.1524/zkri.1989.189.1-2.13.

Geometry files


Prototype Generator

aflow --proto=A2BC4D2_oP18_53_h_a_i_e --params=

Species:

Running:

Output: