AFLOW Prototype: A3B2C2_hR7_166_d_ab_c-001
This structure originally had the label A3B2C2_hR7_166_d_ab_c. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/SD1B
or
https://aflow.org/p/A3B2C2_hR7_166_d_ab_c-001
or
PDF Version
Prototype | Ni$_{3}$Pb$_{2}$S$_{2}$ |
AFLOW prototype label | A3B2C2_hR7_166_d_ab_c-001 |
Mineral name | shandite |
ICSD | 417632 |
Pearson symbol | hR7 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A3B2C2_hR7_166_d_ab_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}$ |
Co$_{3}$In$_{2}$S$_{2}$, Co$_{3}$Sn$_{2}$S$_{2}$, Ni$_{3}$In$_{2}$S$_{2}$, Ni$_{3}$Sn$_{2}$S$_{2}$, O$_{3}$K$_{2}$Sn$_{2}$, Pd$_{3}$Bi$_{2}$S$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Pb I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Pb II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | S I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | S I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3d) | Ni I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3d) | Ni I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3d) | Ni I |