CrCl3(H2O)6 ($J2_{2}$) Structure : A3BC6_hR20_167_e_b_f

Picture of Structure; Click for Big Picture
Prototype : Cl3Cr(H2O)6
AFLOW prototype label : A3BC6_hR20_167_e_b_f
Strukturbericht designation : $J2_{2}$
Pearson symbol : hR20
Space group number : 167
Space group symbol : $R\bar{3}c$
AFLOW prototype command : aflow --proto=A3BC6_hR20_167_e_b_f
--params=
$a$,$c/a$,$x_{2}$,$x_{3}$,$y_{3}$,$z_{3}$


Other compounds with this structure

  • AlCl3(H2O)6

  • The positions of the hydrogen atoms in the water molecules were not determined, so we only provide the positions of the oxygen atoms (labeled as H2O).

Rhombohedral primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac{1}{\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & - \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Cr} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \mbox{Cr} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & \left(- \frac{1}{8} +\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}} + \left(- \frac{\sqrt{3}}{8} +\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl} \\ \mathbf{B}_{5} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\left(\frac{1}{2}x_{2}+\frac{3}{8}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{8\sqrt{3}} +\frac{\sqrt{3}}{2}x_{2}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl} \\ \mathbf{B}_{7} & = & \frac{3}{4} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{8}-\frac{1}{2}x_{2}\right)a \, \mathbf{\hat{x}}-\left(\frac{\sqrt{3}}{2}x_{2}+\frac{5}{8\sqrt{3}}\right)a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{5}{12}c \, \mathbf{\hat{z}} & \left(6e\right) & \mbox{Cl} \\ \mathbf{B}_{9} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{3}+\frac{1}{\sqrt{3}}y_{3}-\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{3}+y_{3}+z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{10} & = & z_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-y_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{\sqrt{3}}x_{3}-\frac{1}{2\sqrt{3}}y_{3}-\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{3}+y_{3}+z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{11} & = & y_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{3}-\frac{1}{2\sqrt{3}}y_{3}+\frac{1}{\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{3}\left(x_{3}+y_{3}+z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{3}-\frac{1}{\sqrt{3}}y_{3}+\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - \frac{1}{3}x_{3} - \frac{1}{3}y_{3} - \frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-y_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{\sqrt{3}}x_{3}+\frac{1}{2\sqrt{3}}y_{3}+\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - \frac{1}{3}x_{3} - \frac{1}{3}y_{3} - \frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{3}+\frac{1}{2\sqrt{3}}y_{3}-\frac{1}{\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - \frac{1}{3}x_{3} - \frac{1}{3}y_{3} - \frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{15} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{3}-\frac{1}{\sqrt{3}}y_{3}+\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}}-\frac{1}{3}\left(x_{3}+y_{3}+z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{16} & = & -z_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(y_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{\sqrt{3}}x_{3}+\frac{1}{2\sqrt{3}}y_{3}+\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}}-\frac{1}{3}\left(x_{3}+y_{3}+z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{17} & = & -y_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2\sqrt{3}}x_{3}+\frac{1}{2\sqrt{3}}y_{3}-\frac{1}{\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}}-\frac{1}{3}\left(x_{3}+y_{3}+z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{3}+\frac{1}{\sqrt{3}}y_{3}-\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +\frac{1}{3}x_{3} + \frac{1}{3}y_{3} + \frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(y_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{\sqrt{3}}x_{3}-\frac{1}{2\sqrt{3}}y_{3}-\frac{1}{2\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +\frac{1}{3}x_{3} + \frac{1}{3}y_{3} + \frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \left(-\frac{1}{2\sqrt{3}}x_{3}-\frac{1}{2\sqrt{3}}y_{3}+\frac{1}{\sqrt{3}}z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +\frac{1}{3}x_{3} + \frac{1}{3}y_{3} + \frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(12f\right) & \mbox{H$_{2}$O} \\ \end{array} \]

References

  • K. R. Andress and C. Carpenter, Kristallhydrate. II. Die Struktur von Chromchlorid– und Aluminiumchloridhexahydrat, Zeitschrift für Kristallographie – Crystalline Materials 87, 446–463 (1934), doi:10.1524/zkri.1934.87.1.446.

Found in

  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933–1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Geometry files


Prototype Generator

aflow --proto=A3BC6_hR20_167_e_b_f --params=

Species:

Running:

Output: