Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_tI8_139_bd_a

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Al3Ti ($D0_{22}$) Structure: A3B_tI8_139_bd_a

Picture of Structure; Click for Big Picture
Prototype : Al3Ti
AFLOW prototype label : A3B_tI8_139_bd_a
Strukturbericht designation : $D0_{22}$
Pearson symbol : tI8
Space group number : 139
Space group symbol : $\text{I4/mmm}$
AFLOW prototype command : aflow --proto=A3B_tI8_139_bd_a
--params=
$a$,$c/a$


  • When $c = 2a$ the atoms are on the sites of a face-centered cubic lattice. When $c/a = 1/\sqrt2$, this becomes the cubic D03 structure.

Body-centered Tetragonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}}\\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}}\\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}}\\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & =&0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & =&0 \mathbf{\hat{x}} + 0 \mathbf{\hat{y}} + 0 \mathbf{\hat{z}} & \left(2a\right) & \text{Ti} \\ \mathbf{B}_{2} & =&\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& =&\frac12 \, c \, \mathbf{\hat{z}}& \left(2b\right) & \text{Al I} \\ \mathbf{B}_{3} & =&\frac34 \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& =&\frac12 \, a \, \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(4d\right) & \text{Al II} \\ \mathbf{B}_{4} & =&\frac14 \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& =&\frac12 \, a \, \mathbf{\hat{x}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(4d\right) & \text{Al II} \\ \end{array} \]

References

  • J. P. Nic, S. Zhang, and D. E. Mikkola, Observations on the systematic alloying of Al3Ti with fourth period elements to yield cubic phases, Scripta Metallurgica et Materialia 24, 1099–1104 (1990), doi:10.1016/0956-716X(90)90306-2.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn., pp. 1023.

Geometry files


Prototype Generator

aflow --proto=A3B_tI8_139_bd_a --params=

Species:

Running:

Output: