Staurolite (Al5Fe2O10(OH)2Si2) Structure : A5B2C10D2E2_mC84_12_acghj_bdi_5j_2i_j

Picture of Structure; Click for Big Picture
Prototype : Al5Fe2O10(OH)2Si2
AFLOW prototype label : A5B2C10D2E2_mC84_12_acghj_bdi_5j_2i_j
Strukturbericht designation : None
Pearson symbol : mC84
Space group number : 12
Space group symbol : $C2/m$
AFLOW prototype command : aflow --proto=A5B2C10D2E2_mC84_12_acghj_bdi_5j_2i_j
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{5}$,$y_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$,$x_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$,$x_{12}$,$y_{12}$,$z_{12}$,$x_{13}$,$y_{13}$,$z_{13}$,$x_{14}$,$y_{14}$,$z_{14}$,$x_{15}$,$y_{15}$,$z_{15}$,$x_{16}$,$y_{16}$,$z_{16}$


  • The orthorhombic structure of staurolite determined by (Náray–Szabó, 1929) was given the Strukturbericht designation $S0_{4}$ by (Hermann, 1937). (Smith, 1968) showed that the structure is actually monoclinic with $\beta ≈ 90°$, rather than orthorhombic. This paper also corrected the chemical composition of the mineral.
  • The hydrogen positions are undetermined, but they are part of a complex distribution of OH ions, and are probably associated with the atoms on the ($4i$) sites (Smith, 1968). We therefore label the ($4i$) sites as OH.
  • The metallic sites are actually somewhat disordered. (Smith, 1968) gives the composition of the various sites as
    • Al ($2a$) Al0.67 Fe0.33
    • Fe ($2b$) Fe0.68 Mn0.32
    • Al ($2c$) Al0.67 Fe0.33
    • Fe ($2d$) Fe0.68 Mn0.32
    • Al ($4g$) Al0.95 Mg0.05
    • Al ($4h$) Al0.95 Mg0.05
    • Fe ($4i$) Fe0.64 Al0.32 Ti0.04
    • Si ($8j$) Si0.936 Al0.064
  • (Donnay, 1983) presents a history of the difficulties in determining the staurolite structure.

Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{Al I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(2b\right) & \mbox{Fe I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2c\right) & \mbox{Al II} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(a+c\cos\beta\right) \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2d\right) & \mbox{Fe II} \\ \mathbf{B}_{5} & = & -y_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} & = & y_{5}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Al III} \\ \mathbf{B}_{6} & = & y_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} & = & -y_{5}b \, \mathbf{\hat{y}} & \left(4g\right) & \mbox{Al III} \\ \mathbf{B}_{7} & = & -y_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Al IV} \\ \mathbf{B}_{8} & = & y_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4h\right) & \mbox{Al IV} \\ \mathbf{B}_{9} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Fe III} \\ \mathbf{B}_{10} & = & -x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{Fe III} \\ \mathbf{B}_{11} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{OH I} \\ \mathbf{B}_{12} & = & -x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{OH I} \\ \mathbf{B}_{13} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{OH II} \\ \mathbf{B}_{14} & = & -x_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \mbox{OH II} \\ \mathbf{B}_{15} & = & \left(x_{10}-y_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}+y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Al V} \\ \mathbf{B}_{16} & = & \left(-x_{10}-y_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Al V} \\ \mathbf{B}_{17} & = & \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}-y_{10}\right) \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Al V} \\ \mathbf{B}_{18} & = & \left(x_{10}+y_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}-y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Al V} \\ \mathbf{B}_{19} & = & \left(x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}+y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O I} \\ \mathbf{B}_{20} & = & \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O I} \\ \mathbf{B}_{21} & = & \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O I} \\ \mathbf{B}_{22} & = & \left(x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}-y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O I} \\ \mathbf{B}_{23} & = & \left(x_{12}-y_{12}\right) \, \mathbf{a}_{1} + \left(x_{12}+y_{12}\right) \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & \left(x_{12}a+z_{12}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + z_{12}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & \left(-x_{12}-y_{12}\right) \, \mathbf{a}_{1} + \left(-x_{12}+y_{12}\right) \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & \left(-x_{12}a-z_{12}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}}-z_{12}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & \left(-x_{12}+y_{12}\right) \, \mathbf{a}_{1} + \left(-x_{12}-y_{12}\right) \, \mathbf{a}_{2}-z_{12} \, \mathbf{a}_{3} & = & \left(-x_{12}a-z_{12}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}}-z_{12}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{26} & = & \left(x_{12}+y_{12}\right) \, \mathbf{a}_{1} + \left(x_{12}-y_{12}\right) \, \mathbf{a}_{2} + z_{12} \, \mathbf{a}_{3} & = & \left(x_{12}a+z_{12}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}} + z_{12}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O II} \\ \mathbf{B}_{27} & = & \left(x_{13}-y_{13}\right) \, \mathbf{a}_{1} + \left(x_{13}+y_{13}\right) \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & \left(x_{13}a+z_{13}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{13}b \, \mathbf{\hat{y}} + z_{13}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O III} \\ \mathbf{B}_{28} & = & \left(-x_{13}-y_{13}\right) \, \mathbf{a}_{1} + \left(-x_{13}+y_{13}\right) \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & \left(-x_{13}a-z_{13}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{13}b \, \mathbf{\hat{y}}-z_{13}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O III} \\ \mathbf{B}_{29} & = & \left(-x_{13}+y_{13}\right) \, \mathbf{a}_{1} + \left(-x_{13}-y_{13}\right) \, \mathbf{a}_{2}-z_{13} \, \mathbf{a}_{3} & = & \left(-x_{13}a-z_{13}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{13}b \, \mathbf{\hat{y}}-z_{13}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O III} \\ \mathbf{B}_{30} & = & \left(x_{13}+y_{13}\right) \, \mathbf{a}_{1} + \left(x_{13}-y_{13}\right) \, \mathbf{a}_{2} + z_{13} \, \mathbf{a}_{3} & = & \left(x_{13}a+z_{13}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{13}b \, \mathbf{\hat{y}} + z_{13}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O III} \\ \mathbf{B}_{31} & = & \left(x_{14}-y_{14}\right) \, \mathbf{a}_{1} + \left(x_{14}+y_{14}\right) \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & \left(x_{14}a+z_{14}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{14}b \, \mathbf{\hat{y}} + z_{14}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O IV} \\ \mathbf{B}_{32} & = & \left(-x_{14}-y_{14}\right) \, \mathbf{a}_{1} + \left(-x_{14}+y_{14}\right) \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & \left(-x_{14}a-z_{14}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{14}b \, \mathbf{\hat{y}}-z_{14}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O IV} \\ \mathbf{B}_{33} & = & \left(-x_{14}+y_{14}\right) \, \mathbf{a}_{1} + \left(-x_{14}-y_{14}\right) \, \mathbf{a}_{2}-z_{14} \, \mathbf{a}_{3} & = & \left(-x_{14}a-z_{14}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{14}b \, \mathbf{\hat{y}}-z_{14}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O IV} \\ \mathbf{B}_{34} & = & \left(x_{14}+y_{14}\right) \, \mathbf{a}_{1} + \left(x_{14}-y_{14}\right) \, \mathbf{a}_{2} + z_{14} \, \mathbf{a}_{3} & = & \left(x_{14}a+z_{14}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{14}b \, \mathbf{\hat{y}} + z_{14}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O IV} \\ \mathbf{B}_{35} & = & \left(x_{15}-y_{15}\right) \, \mathbf{a}_{1} + \left(x_{15}+y_{15}\right) \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & \left(x_{15}a+z_{15}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{15}b \, \mathbf{\hat{y}} + z_{15}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O V} \\ \mathbf{B}_{36} & = & \left(-x_{15}-y_{15}\right) \, \mathbf{a}_{1} + \left(-x_{15}+y_{15}\right) \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & \left(-x_{15}a-z_{15}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{15}b \, \mathbf{\hat{y}}-z_{15}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O V} \\ \mathbf{B}_{37} & = & \left(-x_{15}+y_{15}\right) \, \mathbf{a}_{1} + \left(-x_{15}-y_{15}\right) \, \mathbf{a}_{2}-z_{15} \, \mathbf{a}_{3} & = & \left(-x_{15}a-z_{15}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{15}b \, \mathbf{\hat{y}}-z_{15}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O V} \\ \mathbf{B}_{38} & = & \left(x_{15}+y_{15}\right) \, \mathbf{a}_{1} + \left(x_{15}-y_{15}\right) \, \mathbf{a}_{2} + z_{15} \, \mathbf{a}_{3} & = & \left(x_{15}a+z_{15}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{15}b \, \mathbf{\hat{y}} + z_{15}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{O V} \\ \mathbf{B}_{39} & = & \left(x_{16}-y_{16}\right) \, \mathbf{a}_{1} + \left(x_{16}+y_{16}\right) \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & \left(x_{16}a+z_{16}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{16}b \, \mathbf{\hat{y}} + z_{16}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Si} \\ \mathbf{B}_{40} & = & \left(-x_{16}-y_{16}\right) \, \mathbf{a}_{1} + \left(-x_{16}+y_{16}\right) \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & \left(-x_{16}a-z_{16}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{16}b \, \mathbf{\hat{y}}-z_{16}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Si} \\ \mathbf{B}_{41} & = & \left(-x_{16}+y_{16}\right) \, \mathbf{a}_{1} + \left(-x_{16}-y_{16}\right) \, \mathbf{a}_{2}-z_{16} \, \mathbf{a}_{3} & = & \left(-x_{16}a-z_{16}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{16}b \, \mathbf{\hat{y}}-z_{16}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Si} \\ \mathbf{B}_{42} & = & \left(x_{16}+y_{16}\right) \, \mathbf{a}_{1} + \left(x_{16}-y_{16}\right) \, \mathbf{a}_{2} + z_{16} \, \mathbf{a}_{3} & = & \left(x_{16}a+z_{16}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{16}b \, \mathbf{\hat{y}} + z_{16}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \mbox{Si} \\ \end{array} \]

References

  • J. V. Smith, The crystal structure of staurolite, Am. Mineral. 53, 1139–1155 (1968).
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928–1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • St. Náray–Szabó, The structure of staurolite, Zeitschrift für Kristallographie – Crystalline Materials 71, 103–116 (1929), doi:10.1524/zkri.1929.71.1.103.
  • J. D. H. Donnay and G. Donnay, The staurolite story, Tschermaks\ Min. Petr. Mitt. 31, 1–15 (1983), doi:10.1007/BF01084757.

Geometry files


Prototype Generator

aflow --proto=A5B2C10D2E2_mC84_12_acghj_bdi_5j_2i_j --params=

Species:

Running:

Output: