Pd5Pu3 Structure : A5B3_oC32_63_cfg_ce

Picture of Structure; Click for Big Picture
Prototype : Pd5Pu3
AFLOW prototype label : A5B3_oC32_63_cfg_ce
Strukturbericht designation : None
Pearson symbol : oC32
Space group number : 63
Space group symbol : $Cmcm$
AFLOW prototype command : aflow --proto=A5B3_oC32_63_cfg_ce
--params=
$a$,$b/a$,$c/a$,$y_{1}$,$y_{2}$,$x_{3}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$


Other compounds with this structure

  • Ga5Zr3, In5R3 ($R$ = Ce, Dy, Er, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th, Y), Pb5Ba3, Pd5R3 ($R$ = Sc, Y, Gd–Lu), Rh5Zr3, Ga5U3, (MgxSn1–x)5La3, Sn5La3, Sn5Sr3, and Sn5Yb3

  • Although (Massalski, 1990) lists Pd5Pu3 as the prototype for many structures, it is not shown in the assessed Pd–Pu phase diagram, which is based on data from 1967.
  • (Cromer, 1976) states that this phase may be isostructural with Ga5Zr3, but at the time of publication the exact structure of that phase had not been solved.

Base-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Pd I} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Pd I} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Pu I} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \mbox{Pu I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} & \left(8e\right) & \mbox{Pu II} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Pu II} \\ \mathbf{B}_{7} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}} & \left(8e\right) & \mbox{Pu II} \\ \mathbf{B}_{8} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8e\right) & \mbox{Pu II} \\ \mathbf{B}_{9} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Pd II} \\ \mathbf{B}_{10} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Pd II} \\ \mathbf{B}_{11} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Pd II} \\ \mathbf{B}_{12} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \mbox{Pd II} \\ \mathbf{B}_{13} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Pd III} \\ \mathbf{B}_{14} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Pd III} \\ \mathbf{B}_{15} & = & \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Pd III} \\ \mathbf{B}_{16} & = & \left(x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8g\right) & \mbox{Pd III} \\ \end{array} \]

References

  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, vol. 1 (ASM International, Materials Park, Ohio, USA, 1990), 2nd edn.

Found in

  • A. Provino, N. S. Sangeetha, S. K. Dhar, V. Smetana, K. A. Gschneidner Jr., V. K. Pecharsky, P. Manfrinetti, and A.–V. Mudring, New $R$3Pd5 Compounds ($R$ = Sc, Y, Gd–Lu): Formation and Stability, Crystal Structure, and Antiferromagnetism, Cryst. Growth\ Des. 16, 6001–6015 (2016), doi:10.1021/acs.cgd.6b01045.

Geometry files


Prototype Generator

aflow --proto=A5B3_oC32_63_cfg_ce --params=

Species:

Running:

Output: