Fluorapatite [Ca5F(PO4)3, $H5_{7}$] Structure : A5BC12D3_hP42_176_fh_a_2hi_h

Picture of Structure; Click for Big Picture
Prototype : Ca5FO12P3
AFLOW prototype label : A5BC12D3_hP42_176_fh_a_2hi_h
Strukturbericht designation : $H5_{7}$
Pearson symbol : hP42
Space group number : 176
Space group symbol : $P6_{3}/m$
AFLOW prototype command : aflow --proto=A5BC12D3_hP42_176_fh_a_2hi_h
--params=
$a$,$c/a$,$z_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$,$x_{5}$,$y_{5}$,$x_{6}$,$y_{6}$,$x_{7}$,$y_{7}$,$z_{7}$


Other compounds with this structure

  • Ca5OH(PO4)3 (hydroxylapatite) and Ca5Cl(PO4)3 (chlorapatite)

  • Apatite can be formed with most $M$2+ metallic ions replacing the calcium, and many ions (AsO3, CO3, Si3, etc.) replacing the phosphate. While these structures are related to the prototype, they may have slight changes in crystal structure. The phosphate apatites are the main source of phosphorus on Earth (Hughes, 2002).
  • When OH or Cl replaces F, that ion is displaced from the ($2a$) position to the ($4e$) position, with $z = 0.1979$ for OH and 0.4323 for Cl. The substitute ion fills half of the ($4f$) sites.

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &\mbox{Wyckoff Position} & \mbox{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{F} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(2a\right) & \mbox{F} \\ \mathbf{B}_{3} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Ca I} \\ \mathbf{B}_{4} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Ca I} \\ \mathbf{B}_{5} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Ca I} \\ \mathbf{B}_{6} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(4f\right) & \mbox{Ca I} \\ \mathbf{B}_{7} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{3}+y_{3}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Ca II} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{3}-y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Ca II} \\ \mathbf{B}_{9} & = & \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-x_{3}+\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Ca II} \\ \mathbf{B}_{10} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{3}+y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{3}-y_{3}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Ca II} \\ \mathbf{B}_{11} & = & y_{3} \, \mathbf{a}_{1} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{3}+y_{3}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Ca II} \\ \mathbf{B}_{12} & = & \left(x_{3}-y_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(x_{3}-\frac{1}{2}y_{3}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{3}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{Ca II} \\ \mathbf{B}_{13} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{4}+y_{4}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{14} & = & -y_{4} \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{4}-y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{15} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-x_{4}+\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{16} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{4}+y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{4}-y_{4}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{17} & = & y_{4} \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{4}+y_{4}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{18} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(x_{4}-\frac{1}{2}y_{4}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{4}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O I} \\ \mathbf{B}_{19} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O II} \\ \mathbf{B}_{20} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O II} \\ \mathbf{B}_{21} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O II} \\ \mathbf{B}_{22} & = & -x_{5} \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O II} \\ \mathbf{B}_{23} & = & y_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{5}+y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O II} \\ \mathbf{B}_{24} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(x_{5}-\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{O II} \\ \mathbf{B}_{25} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{6}+y_{6}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{P} \\ \mathbf{B}_{26} & = & -y_{6} \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{6}-y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{P} \\ \mathbf{B}_{27} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(-x_{6}+\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{P} \\ \mathbf{B}_{28} & = & -x_{6} \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{6}-y_{6}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{P} \\ \mathbf{B}_{29} & = & y_{6} \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{6}+y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{P} \\ \mathbf{B}_{30} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(x_{6}-\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(6h\right) & \mbox{P} \\ \mathbf{B}_{31} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{7}+y_{7}\right)a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{32} & = & -y_{7} \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{7}-y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{33} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}+\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{34} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{7}-y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{35} & = & y_{7} \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{7}+y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{36} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{7}\right) \, \mathbf{a}_{3} & = & \left(x_{7}-\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{7}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{37} & = & -x_{7} \, \mathbf{a}_{1}-y_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & -\frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{7}-y_{7}\right)a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{38} & = & y_{7} \, \mathbf{a}_{1} + \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-\frac{1}{2}x_{7}+y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{39} & = & \left(x_{7}-y_{7}\right) \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}-\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}}-z_{7}c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{40} & = & x_{7} \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{7}+y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{7}+y_{7}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{41} & = & -y_{7} \, \mathbf{a}_{1} + \left(x_{7}-y_{7}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{7}-y_{7}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \mathbf{B}_{42} & = & \left(-x_{7}+y_{7}\right) \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{7}\right) \, \mathbf{a}_{3} & = & \left(-x_{7}+\frac{1}{2}y_{7}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{7}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{7}\right)c \, \mathbf{\hat{z}} & \left(12i\right) & \mbox{O III} \\ \end{array} \]

References

  • J. M. Hughes and J. Rakovan, The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl), Rev. Mineral. Geochem. 48, 1–12 (2002), doi:10.2138/rmg.2002.48.1.

Geometry files


Prototype Generator

aflow --proto=A5BC12D3_hP42_176_fh_a_2hi_h --params=

Species:

Running:

Output: